Metamath Proof Explorer


Theorem rnglz

Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses rngcl.b B=BaseR
rngcl.t ·˙=R
rnglz.z 0˙=0R
Assertion rnglz RRngXB0˙·˙X=0˙

Proof

Step Hyp Ref Expression
1 rngcl.b B=BaseR
2 rngcl.t ·˙=R
3 rnglz.z 0˙=0R
4 rngabl RRngRAbel
5 ablgrp RAbelRGrp
6 4 5 syl RRngRGrp
7 1 3 grpidcl RGrp0˙B
8 eqid +R=+R
9 1 8 3 grplid RGrp0˙B0˙+R0˙=0˙
10 6 7 9 syl2anc2 RRng0˙+R0˙=0˙
11 10 adantr RRngXB0˙+R0˙=0˙
12 11 oveq1d RRngXB0˙+R0˙·˙X=0˙·˙X
13 simpl RRngXBRRng
14 6 7 syl RRng0˙B
15 14 14 jca RRng0˙B0˙B
16 15 anim1i RRngXB0˙B0˙BXB
17 df-3an 0˙B0˙BXB0˙B0˙BXB
18 16 17 sylibr RRngXB0˙B0˙BXB
19 1 8 2 rngdir RRng0˙B0˙BXB0˙+R0˙·˙X=0˙·˙X+R0˙·˙X
20 13 18 19 syl2anc RRngXB0˙+R0˙·˙X=0˙·˙X+R0˙·˙X
21 6 adantr RRngXBRGrp
22 14 adantr RRngXB0˙B
23 simpr RRngXBXB
24 1 2 rngcl RRng0˙BXB0˙·˙XB
25 13 22 23 24 syl3anc RRngXB0˙·˙XB
26 1 8 3 grprid RGrp0˙·˙XB0˙·˙X+R0˙=0˙·˙X
27 26 eqcomd RGrp0˙·˙XB0˙·˙X=0˙·˙X+R0˙
28 21 25 27 syl2anc RRngXB0˙·˙X=0˙·˙X+R0˙
29 12 20 28 3eqtr3d RRngXB0˙·˙X+R0˙·˙X=0˙·˙X+R0˙
30 1 8 grplcan RGrp0˙·˙XB0˙B0˙·˙XB0˙·˙X+R0˙·˙X=0˙·˙X+R0˙0˙·˙X=0˙
31 21 25 22 25 30 syl13anc RRngXB0˙·˙X+R0˙·˙X=0˙·˙X+R0˙0˙·˙X=0˙
32 29 31 mpbid RRngXB0˙·˙X=0˙