Metamath Proof Explorer


Theorem rngurd

Description: Deduce the unit of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016)

Ref Expression
Hypotheses rngurd.b φ B = Base R
rngurd.p φ · ˙ = R
rngurd.z φ 1 ˙ B
rngurd.i φ x B 1 ˙ · ˙ x = x
rngurd.j φ x B x · ˙ 1 ˙ = x
Assertion rngurd φ 1 ˙ = 1 R

Proof

Step Hyp Ref Expression
1 rngurd.b φ B = Base R
2 rngurd.p φ · ˙ = R
3 rngurd.z φ 1 ˙ B
4 rngurd.i φ x B 1 ˙ · ˙ x = x
5 rngurd.j φ x B x · ˙ 1 ˙ = x
6 eqid Base R = Base R
7 eqid R = R
8 eqid 1 R = 1 R
9 6 7 8 dfur2 1 R = ι e | e Base R x Base R e R x = x x R e = x
10 3 1 eleqtrd φ 1 ˙ Base R
11 4 5 jca φ x B 1 ˙ · ˙ x = x x · ˙ 1 ˙ = x
12 11 ralrimiva φ x B 1 ˙ · ˙ x = x x · ˙ 1 ˙ = x
13 2 adantr φ x B · ˙ = R
14 13 oveqd φ x B 1 ˙ · ˙ x = 1 ˙ R x
15 14 eqeq1d φ x B 1 ˙ · ˙ x = x 1 ˙ R x = x
16 13 oveqd φ x B x · ˙ 1 ˙ = x R 1 ˙
17 16 eqeq1d φ x B x · ˙ 1 ˙ = x x R 1 ˙ = x
18 15 17 anbi12d φ x B 1 ˙ · ˙ x = x x · ˙ 1 ˙ = x 1 ˙ R x = x x R 1 ˙ = x
19 1 18 raleqbidva φ x B 1 ˙ · ˙ x = x x · ˙ 1 ˙ = x x Base R 1 ˙ R x = x x R 1 ˙ = x
20 12 19 mpbid φ x Base R 1 ˙ R x = x x R 1 ˙ = x
21 1 eleq2d φ e B e Base R
22 13 oveqd φ x B e · ˙ x = e R x
23 22 eqeq1d φ x B e · ˙ x = x e R x = x
24 13 oveqd φ x B x · ˙ e = x R e
25 24 eqeq1d φ x B x · ˙ e = x x R e = x
26 23 25 anbi12d φ x B e · ˙ x = x x · ˙ e = x e R x = x x R e = x
27 1 26 raleqbidva φ x B e · ˙ x = x x · ˙ e = x x Base R e R x = x x R e = x
28 21 27 anbi12d φ e B x B e · ˙ x = x x · ˙ e = x e Base R x Base R e R x = x x R e = x
29 4 ralrimiva φ x B 1 ˙ · ˙ x = x
30 29 adantr φ e B x B 1 ˙ · ˙ x = x
31 simpr φ e B e B
32 simpr φ e B x = e x = e
33 32 oveq2d φ e B x = e 1 ˙ · ˙ x = 1 ˙ · ˙ e
34 33 32 eqeq12d φ e B x = e 1 ˙ · ˙ x = x 1 ˙ · ˙ e = e
35 31 34 rspcdv φ e B x B 1 ˙ · ˙ x = x 1 ˙ · ˙ e = e
36 30 35 mpd φ e B 1 ˙ · ˙ e = e
37 36 adantrr φ e B x B e · ˙ x = x x · ˙ e = x 1 ˙ · ˙ e = e
38 3 adantr φ e B x B e · ˙ x = x x · ˙ e = x 1 ˙ B
39 simprr φ e B x B e · ˙ x = x x · ˙ e = x x B e · ˙ x = x x · ˙ e = x
40 oveq2 x = 1 ˙ e · ˙ x = e · ˙ 1 ˙
41 id x = 1 ˙ x = 1 ˙
42 40 41 eqeq12d x = 1 ˙ e · ˙ x = x e · ˙ 1 ˙ = 1 ˙
43 oveq1 x = 1 ˙ x · ˙ e = 1 ˙ · ˙ e
44 43 41 eqeq12d x = 1 ˙ x · ˙ e = x 1 ˙ · ˙ e = 1 ˙
45 42 44 anbi12d x = 1 ˙ e · ˙ x = x x · ˙ e = x e · ˙ 1 ˙ = 1 ˙ 1 ˙ · ˙ e = 1 ˙
46 45 rspcva 1 ˙ B x B e · ˙ x = x x · ˙ e = x e · ˙ 1 ˙ = 1 ˙ 1 ˙ · ˙ e = 1 ˙
47 46 simprd 1 ˙ B x B e · ˙ x = x x · ˙ e = x 1 ˙ · ˙ e = 1 ˙
48 38 39 47 syl2anc φ e B x B e · ˙ x = x x · ˙ e = x 1 ˙ · ˙ e = 1 ˙
49 37 48 eqtr3d φ e B x B e · ˙ x = x x · ˙ e = x e = 1 ˙
50 49 ex φ e B x B e · ˙ x = x x · ˙ e = x e = 1 ˙
51 28 50 sylbird φ e Base R x Base R e R x = x x R e = x e = 1 ˙
52 51 alrimiv φ e e Base R x Base R e R x = x x R e = x e = 1 ˙
53 eleq1 e = 1 ˙ e Base R 1 ˙ Base R
54 oveq1 e = 1 ˙ e R x = 1 ˙ R x
55 54 eqeq1d e = 1 ˙ e R x = x 1 ˙ R x = x
56 55 ovanraleqv e = 1 ˙ x Base R e R x = x x R e = x x Base R 1 ˙ R x = x x R 1 ˙ = x
57 53 56 anbi12d e = 1 ˙ e Base R x Base R e R x = x x R e = x 1 ˙ Base R x Base R 1 ˙ R x = x x R 1 ˙ = x
58 57 eqeu 1 ˙ Base R 1 ˙ Base R x Base R 1 ˙ R x = x x R 1 ˙ = x e e Base R x Base R e R x = x x R e = x e = 1 ˙ ∃! e e Base R x Base R e R x = x x R e = x
59 10 10 20 52 58 syl121anc φ ∃! e e Base R x Base R e R x = x x R e = x
60 57 iota2 1 ˙ B ∃! e e Base R x Base R e R x = x x R e = x 1 ˙ Base R x Base R 1 ˙ R x = x x R 1 ˙ = x ι e | e Base R x Base R e R x = x x R e = x = 1 ˙
61 3 59 60 syl2anc φ 1 ˙ Base R x Base R 1 ˙ R x = x x R 1 ˙ = x ι e | e Base R x Base R e R x = x x R e = x = 1 ˙
62 10 20 61 mpbi2and φ ι e | e Base R x Base R e R x = x x R e = x = 1 ˙
63 9 62 syl5req φ 1 ˙ = 1 R