Step |
Hyp |
Ref |
Expression |
1 |
|
rngurd.b |
|
2 |
|
rngurd.p |
|
3 |
|
rngurd.z |
|
4 |
|
rngurd.i |
|
5 |
|
rngurd.j |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
6 7 8
|
dfur2 |
|
10 |
3 1
|
eleqtrd |
|
11 |
4 5
|
jca |
|
12 |
11
|
ralrimiva |
|
13 |
2
|
adantr |
|
14 |
13
|
oveqd |
|
15 |
14
|
eqeq1d |
|
16 |
13
|
oveqd |
|
17 |
16
|
eqeq1d |
|
18 |
15 17
|
anbi12d |
|
19 |
1 18
|
raleqbidva |
|
20 |
12 19
|
mpbid |
|
21 |
1
|
eleq2d |
|
22 |
13
|
oveqd |
|
23 |
22
|
eqeq1d |
|
24 |
13
|
oveqd |
|
25 |
24
|
eqeq1d |
|
26 |
23 25
|
anbi12d |
|
27 |
1 26
|
raleqbidva |
|
28 |
21 27
|
anbi12d |
|
29 |
4
|
ralrimiva |
|
30 |
29
|
adantr |
|
31 |
|
simpr |
|
32 |
|
simpr |
|
33 |
32
|
oveq2d |
|
34 |
33 32
|
eqeq12d |
|
35 |
31 34
|
rspcdv |
|
36 |
30 35
|
mpd |
|
37 |
36
|
adantrr |
|
38 |
3
|
adantr |
|
39 |
|
simprr |
|
40 |
|
oveq2 |
|
41 |
|
id |
|
42 |
40 41
|
eqeq12d |
|
43 |
|
oveq1 |
|
44 |
43 41
|
eqeq12d |
|
45 |
42 44
|
anbi12d |
|
46 |
45
|
rspcva |
|
47 |
46
|
simprd |
|
48 |
38 39 47
|
syl2anc |
|
49 |
37 48
|
eqtr3d |
|
50 |
49
|
ex |
|
51 |
28 50
|
sylbird |
|
52 |
51
|
alrimiv |
|
53 |
|
eleq1 |
|
54 |
|
oveq1 |
|
55 |
54
|
eqeq1d |
|
56 |
55
|
ovanraleqv |
|
57 |
53 56
|
anbi12d |
|
58 |
57
|
eqeu |
|
59 |
10 10 20 52 58
|
syl121anc |
|
60 |
57
|
iota2 |
|
61 |
3 59 60
|
syl2anc |
|
62 |
10 20 61
|
mpbi2and |
|
63 |
9 62
|
eqtr2id |
|