Metamath Proof Explorer


Theorem rprmval

Description: The prime elements of a ring R . (Contributed by Thierry Arnoux, 1-Jul-2024)

Ref Expression
Hypotheses rprmval.b B=BaseR
rprmval.u U=UnitR
rprmval.1 0˙=0R
rprmval.m ·˙=R
rprmval.d ˙=rR
Assertion rprmval RVRPrimeR=pBU0˙|xByBp˙x·˙yp˙xp˙y

Proof

Step Hyp Ref Expression
1 rprmval.b B=BaseR
2 rprmval.u U=UnitR
3 rprmval.1 0˙=0R
4 rprmval.m ·˙=R
5 rprmval.d ˙=rR
6 df-rprm RPrime=rVBaser/bpbUnitr0r|xbyb[˙rr/d]˙pdxrypdxpdy
7 fvexd r=RBaserV
8 simpr r=Rb=Baserb=Baser
9 fveq2 r=RBaser=BaseR
10 9 adantr r=Rb=BaserBaser=BaseR
11 8 10 eqtrd r=Rb=Baserb=BaseR
12 11 1 eqtr4di r=Rb=Baserb=B
13 fveq2 r=RUnitr=UnitR
14 13 2 eqtr4di r=RUnitr=U
15 fveq2 r=R0r=0R
16 15 3 eqtr4di r=R0r=0˙
17 16 sneqd r=R0r=0˙
18 14 17 uneq12d r=RUnitr0r=U0˙
19 18 adantr r=Rb=BaserUnitr0r=U0˙
20 12 19 difeq12d r=Rb=BaserbUnitr0r=BU0˙
21 fvexd r=Rb=BaserrrV
22 eqidd r=Rb=Baserd=rrp=p
23 simpr r=Rb=Baserd=rrd=rr
24 fveq2 r=Rrr=rR
25 24 ad2antrr r=Rb=Baserd=rrrr=rR
26 23 25 eqtrd r=Rb=Baserd=rrd=rR
27 26 5 eqtr4di r=Rb=Baserd=rrd=˙
28 fveq2 r=Rr=R
29 28 4 eqtr4di r=Rr=·˙
30 29 ad2antrr r=Rb=Baserd=rrr=·˙
31 30 oveqd r=Rb=Baserd=rrxry=x·˙y
32 22 27 31 breq123d r=Rb=Baserd=rrpdxryp˙x·˙y
33 27 breqd r=Rb=Baserd=rrpdxp˙x
34 27 breqd r=Rb=Baserd=rrpdyp˙y
35 33 34 orbi12d r=Rb=Baserd=rrpdxpdyp˙xp˙y
36 32 35 imbi12d r=Rb=Baserd=rrpdxrypdxpdyp˙x·˙yp˙xp˙y
37 21 36 sbcied r=Rb=Baser[˙rr/d]˙pdxrypdxpdyp˙x·˙yp˙xp˙y
38 12 37 raleqbidv r=Rb=Baseryb[˙rr/d]˙pdxrypdxpdyyBp˙x·˙yp˙xp˙y
39 12 38 raleqbidv r=Rb=Baserxbyb[˙rr/d]˙pdxrypdxpdyxByBp˙x·˙yp˙xp˙y
40 20 39 rabeqbidv r=Rb=BaserpbUnitr0r|xbyb[˙rr/d]˙pdxrypdxpdy=pBU0˙|xByBp˙x·˙yp˙xp˙y
41 7 40 csbied r=RBaser/bpbUnitr0r|xbyb[˙rr/d]˙pdxrypdxpdy=pBU0˙|xByBp˙x·˙yp˙xp˙y
42 elex RVRV
43 1 fvexi BV
44 43 difexi BU0˙V
45 44 rabex pBU0˙|xByBp˙x·˙yp˙xp˙yV
46 45 a1i RVpBU0˙|xByBp˙x·˙yp˙xp˙yV
47 6 41 42 46 fvmptd3 RVRPrimeR=pBU0˙|xByBp˙x·˙yp˙xp˙y