| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rsprprmprmidl.k |
|
| 2 |
|
rsprprmprmidl.r |
|
| 3 |
|
rsprprmprmidl.p |
|
| 4 |
2
|
crngringd |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 6 2 3
|
rprmcl |
|
| 8 |
7
|
snssd |
|
| 9 |
|
eqid |
|
| 10 |
1 5 9
|
rspcl |
|
| 11 |
4 8 10
|
syl2anc |
|
| 12 |
|
eqid |
|
| 13 |
5 12
|
ringidcl |
|
| 14 |
4 13
|
syl |
|
| 15 |
|
eqid |
|
| 16 |
6 15 2 3
|
rprmnunit |
|
| 17 |
2
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
15 12
|
1unit |
|
| 20 |
4 19
|
syl |
|
| 21 |
20
|
adantr |
|
| 22 |
|
eqid |
|
| 23 |
15 22
|
dvdsunit |
|
| 24 |
17 18 21 23
|
syl3anc |
|
| 25 |
16 24
|
mtand |
|
| 26 |
5 1 22 4 7
|
ellpi |
|
| 27 |
25 26
|
mtbird |
|
| 28 |
|
nelne1 |
|
| 29 |
14 27 28
|
syl2anc |
|
| 30 |
29
|
necomd |
|
| 31 |
5 1 22 4 7
|
ellpi |
|
| 32 |
31
|
ad3antrrr |
|
| 33 |
32
|
biimpar |
|
| 34 |
4
|
ad2antrr |
|
| 35 |
34
|
adantr |
|
| 36 |
7
|
ad2antrr |
|
| 37 |
36
|
adantr |
|
| 38 |
5 1 22 35 37
|
ellpi |
|
| 39 |
38
|
biimpar |
|
| 40 |
|
eqid |
|
| 41 |
2
|
ad3antrrr |
|
| 42 |
3
|
ad3antrrr |
|
| 43 |
|
simpllr |
|
| 44 |
|
simplr |
|
| 45 |
5 1 22 34 36
|
ellpi |
|
| 46 |
45
|
biimpa |
|
| 47 |
5 6 22 40 41 42 43 44 46
|
rprmdvds |
|
| 48 |
33 39 47
|
orim12da |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
anasss |
|
| 51 |
50
|
ralrimivva |
|
| 52 |
5 40
|
isprmidlc |
|
| 53 |
52
|
biimpar |
|
| 54 |
2 11 30 51 53
|
syl13anc |
|