Description: Lemma for sadadd . (Contributed by Mario Carneiro, 9-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | saddisj.1 | |
|
saddisj.2 | |
||
saddisj.3 | |
||
saddisjlem.c | |
||
saddisjlem.3 | |
||
Assertion | saddisjlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saddisj.1 | |
|
2 | saddisj.2 | |
|
3 | saddisj.3 | |
|
4 | saddisjlem.c | |
|
5 | saddisjlem.3 | |
|
6 | 1 2 4 5 | sadval | |
7 | fveq2 | |
|
8 | 7 | eleq2d | |
9 | 8 | notbid | |
10 | 9 | imbi2d | |
11 | fveq2 | |
|
12 | 11 | eleq2d | |
13 | 12 | notbid | |
14 | 13 | imbi2d | |
15 | fveq2 | |
|
16 | 15 | eleq2d | |
17 | 16 | notbid | |
18 | 17 | imbi2d | |
19 | fveq2 | |
|
20 | 19 | eleq2d | |
21 | 20 | notbid | |
22 | 21 | imbi2d | |
23 | 1 2 4 | sadc0 | |
24 | noel | |
|
25 | 1 | ad2antrr | |
26 | 2 | ad2antrr | |
27 | simplr | |
|
28 | 25 26 4 27 | sadcp1 | |
29 | cad0 | |
|
30 | 29 | adantl | |
31 | elin | |
|
32 | 3 | ad2antrr | |
33 | 32 | eleq2d | |
34 | 31 33 | bitr3id | |
35 | 28 30 34 | 3bitrd | |
36 | 24 35 | mtbiri | |
37 | 36 | ex | |
38 | 37 | expcom | |
39 | 38 | a2d | |
40 | 10 14 18 22 23 39 | nn0ind | |
41 | 5 40 | mpcom | |
42 | hadrot | |
|
43 | had0 | |
|
44 | 42 43 | bitr3id | |
45 | 41 44 | syl | |
46 | noel | |
|
47 | elin | |
|
48 | 3 | eleq2d | |
49 | 47 48 | bitr3id | |
50 | 46 49 | mtbiri | |
51 | xor2 | |
|
52 | 51 | rbaib | |
53 | 50 52 | syl | |
54 | elun | |
|
55 | 53 54 | bitr4di | |
56 | 6 45 55 | 3bitrd | |