Metamath Proof Explorer


Theorem saddisjlem

Description: Lemma for sadadd . (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Hypotheses saddisj.1 φA0
saddisj.2 φB0
saddisj.3 φAB=
saddisjlem.c C=seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1
saddisjlem.3 φN0
Assertion saddisjlem φNAsaddBNAB

Proof

Step Hyp Ref Expression
1 saddisj.1 φA0
2 saddisj.2 φB0
3 saddisj.3 φAB=
4 saddisjlem.c C=seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1
5 saddisjlem.3 φN0
6 1 2 4 5 sadval φNAsaddBhaddNANBCN
7 fveq2 x=0Cx=C0
8 7 eleq2d x=0CxC0
9 8 notbid x=0¬Cx¬C0
10 9 imbi2d x=0φ¬Cxφ¬C0
11 fveq2 x=kCx=Ck
12 11 eleq2d x=kCxCk
13 12 notbid x=k¬Cx¬Ck
14 13 imbi2d x=kφ¬Cxφ¬Ck
15 fveq2 x=k+1Cx=Ck+1
16 15 eleq2d x=k+1CxCk+1
17 16 notbid x=k+1¬Cx¬Ck+1
18 17 imbi2d x=k+1φ¬Cxφ¬Ck+1
19 fveq2 x=NCx=CN
20 19 eleq2d x=NCxCN
21 20 notbid x=N¬Cx¬CN
22 21 imbi2d x=Nφ¬Cxφ¬CN
23 1 2 4 sadc0 φ¬C0
24 noel ¬k
25 1 ad2antrr φk0¬CkA0
26 2 ad2antrr φk0¬CkB0
27 simplr φk0¬Ckk0
28 25 26 4 27 sadcp1 φk0¬CkCk+1caddkAkBCk
29 cad0 ¬CkcaddkAkBCkkAkB
30 29 adantl φk0¬CkcaddkAkBCkkAkB
31 elin kABkAkB
32 3 ad2antrr φk0¬CkAB=
33 32 eleq2d φk0¬CkkABk
34 31 33 bitr3id φk0¬CkkAkBk
35 28 30 34 3bitrd φk0¬CkCk+1k
36 24 35 mtbiri φk0¬Ck¬Ck+1
37 36 ex φk0¬Ck¬Ck+1
38 37 expcom k0φ¬Ck¬Ck+1
39 38 a2d k0φ¬Ckφ¬Ck+1
40 10 14 18 22 23 39 nn0ind N0φ¬CN
41 5 40 mpcom φ¬CN
42 hadrot haddCNNANBhaddNANBCN
43 had0 ¬CNhaddCNNANBNANB
44 42 43 bitr3id ¬CNhaddNANBCNNANB
45 41 44 syl φhaddNANBCNNANB
46 noel ¬N
47 elin NABNANB
48 3 eleq2d φNABN
49 47 48 bitr3id φNANBN
50 46 49 mtbiri φ¬NANB
51 xor2 NANBNANB¬NANB
52 51 rbaib ¬NANBNANBNANB
53 50 52 syl φNANBNANB
54 elun NABNANB
55 53 54 bitr4di φNANBNAB
56 6 45 55 3bitrd φNAsaddBNAB