Metamath Proof Explorer


Theorem safesnsupfidom1o

Description: If B is a finite subset of ordered class A , we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024)

Ref Expression
Hypotheses safesnsupfidom1o.small φO=O=1𝑜
safesnsupfidom1o.finite φBFin
Assertion safesnsupfidom1o φifOBsupBARB1𝑜

Proof

Step Hyp Ref Expression
1 safesnsupfidom1o.small φO=O=1𝑜
2 safesnsupfidom1o.finite φBFin
3 iftrue OBifOBsupBARB=supBAR
4 3 adantl φOBifOBsupBARB=supBAR
5 ensn1g supBARVsupBAR1𝑜
6 1on 1𝑜On
7 domrefg 1𝑜On1𝑜1𝑜
8 6 7 ax-mp 1𝑜1𝑜
9 endomtr supBAR1𝑜1𝑜1𝑜supBAR1𝑜
10 5 8 9 sylancl supBARVsupBAR1𝑜
11 snprc ¬supBARVsupBAR=
12 snex supBARV
13 eqeng supBARVsupBAR=supBAR
14 12 13 ax-mp supBAR=supBAR
15 11 14 sylbi ¬supBARVsupBAR
16 0domg 1𝑜On1𝑜
17 6 16 ax-mp 1𝑜
18 endomtr supBAR1𝑜supBAR1𝑜
19 15 17 18 sylancl ¬supBARVsupBAR1𝑜
20 10 19 pm2.61i supBAR1𝑜
21 4 20 eqbrtrdi φOBifOBsupBARB1𝑜
22 iffalse ¬OBifOBsupBARB=B
23 22 adantl φ¬OBifOBsupBARB=B
24 0elon On
25 eleq1 O=OOnOn
26 24 25 mpbiri O=OOn
27 eleq1 O=1𝑜OOn1𝑜On
28 6 27 mpbiri O=1𝑜OOn
29 26 28 jaoi O=O=1𝑜OOn
30 fidomtri BFinOOnBO¬OB
31 29 30 sylan2 BFinO=O=1𝑜BO¬OB
32 breq2 O=BOB
33 domtr B1𝑜B1𝑜
34 17 33 mpan2 BB1𝑜
35 32 34 syl6bi O=BOB1𝑜
36 breq2 O=1𝑜BOB1𝑜
37 36 biimpd O=1𝑜BOB1𝑜
38 35 37 jaoi O=O=1𝑜BOB1𝑜
39 38 adantl BFinO=O=1𝑜BOB1𝑜
40 31 39 sylbird BFinO=O=1𝑜¬OBB1𝑜
41 2 1 40 syl2anc φ¬OBB1𝑜
42 41 imp φ¬OBB1𝑜
43 23 42 eqbrtrd φ¬OBifOBsupBARB1𝑜
44 21 43 pm2.61dan φifOBsupBARB1𝑜