Description: If B is a finite subset of ordered class A , we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | safesnsupfidom1o.small | |
|
safesnsupfidom1o.finite | |
||
Assertion | safesnsupfidom1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | safesnsupfidom1o.small | |
|
2 | safesnsupfidom1o.finite | |
|
3 | iftrue | |
|
4 | 3 | adantl | |
5 | ensn1g | |
|
6 | 1on | |
|
7 | domrefg | |
|
8 | 6 7 | ax-mp | |
9 | endomtr | |
|
10 | 5 8 9 | sylancl | |
11 | snprc | |
|
12 | snex | |
|
13 | eqeng | |
|
14 | 12 13 | ax-mp | |
15 | 11 14 | sylbi | |
16 | 0domg | |
|
17 | 6 16 | ax-mp | |
18 | endomtr | |
|
19 | 15 17 18 | sylancl | |
20 | 10 19 | pm2.61i | |
21 | 4 20 | eqbrtrdi | |
22 | iffalse | |
|
23 | 22 | adantl | |
24 | 0elon | |
|
25 | eleq1 | |
|
26 | 24 25 | mpbiri | |
27 | eleq1 | |
|
28 | 6 27 | mpbiri | |
29 | 26 28 | jaoi | |
30 | fidomtri | |
|
31 | 29 30 | sylan2 | |
32 | breq2 | |
|
33 | domtr | |
|
34 | 17 33 | mpan2 | |
35 | 32 34 | syl6bi | |
36 | breq2 | |
|
37 | 36 | biimpd | |
38 | 35 37 | jaoi | |
39 | 38 | adantl | |
40 | 31 39 | sylbird | |
41 | 2 1 40 | syl2anc | |
42 | 41 | imp | |
43 | 23 42 | eqbrtrd | |
44 | 21 43 | pm2.61dan | |