Metamath Proof Explorer


Theorem scutbdaybnd2

Description: An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Dec-2021)

Ref Expression
Assertion scutbdaybnd2 AsBbdayA|sBsucbdayAB

Proof

Step Hyp Ref Expression
1 etasslt2 AsBxNoAsxxsBbdayxsucbdayAB
2 scutbday AsBbdayA|sB=bdayyNo|AsyysB
3 2 adantr AsBxNoAsxxsBbdayxsucbdayABbdayA|sB=bdayyNo|AsyysB
4 bdayfn bdayFnNo
5 ssrab2 yNo|AsyysBNo
6 simprl AsBxNoAsxxsBbdayxsucbdayABxNo
7 simprr1 AsBxNoAsxxsBbdayxsucbdayABAsx
8 simprr2 AsBxNoAsxxsBbdayxsucbdayABxsB
9 7 8 jca AsBxNoAsxxsBbdayxsucbdayABAsxxsB
10 sneq y=xy=x
11 10 breq2d y=xAsyAsx
12 10 breq1d y=xysBxsB
13 11 12 anbi12d y=xAsyysBAsxxsB
14 13 elrab xyNo|AsyysBxNoAsxxsB
15 6 9 14 sylanbrc AsBxNoAsxxsBbdayxsucbdayABxyNo|AsyysB
16 fnfvima bdayFnNoyNo|AsyysBNoxyNo|AsyysBbdayxbdayyNo|AsyysB
17 4 5 15 16 mp3an12i AsBxNoAsxxsBbdayxsucbdayABbdayxbdayyNo|AsyysB
18 intss1 bdayxbdayyNo|AsyysBbdayyNo|AsyysBbdayx
19 17 18 syl AsBxNoAsxxsBbdayxsucbdayABbdayyNo|AsyysBbdayx
20 3 19 eqsstrd AsBxNoAsxxsBbdayxsucbdayABbdayA|sBbdayx
21 simprr3 AsBxNoAsxxsBbdayxsucbdayABbdayxsucbdayAB
22 20 21 sstrd AsBxNoAsxxsBbdayxsucbdayABbdayA|sBsucbdayAB
23 22 rexlimdvaa AsBxNoAsxxsBbdayxsucbdayABbdayA|sBsucbdayAB
24 1 23 mpd AsBbdayA|sBsucbdayAB