Metamath Proof Explorer


Theorem sdrgdvcl

Description: A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Hypotheses sdrgdvcl.i ×˙=/rR
sdrgdvcl.0 0˙=0R
sdrgdvcl.a φASubDRingR
sdrgdvcl.x φXA
sdrgdvcl.y φYA
sdrgdvcl.1 φY0˙
Assertion sdrgdvcl φX×˙YA

Proof

Step Hyp Ref Expression
1 sdrgdvcl.i ×˙=/rR
2 sdrgdvcl.0 0˙=0R
3 sdrgdvcl.a φASubDRingR
4 sdrgdvcl.x φXA
5 sdrgdvcl.y φYA
6 sdrgdvcl.1 φY0˙
7 issdrg ASubDRingRRDivRingASubRingRR𝑠ADivRing
8 3 7 sylib φRDivRingASubRingRR𝑠ADivRing
9 8 simp3d φR𝑠ADivRing
10 9 drngringd φR𝑠ARing
11 8 simp2d φASubRingR
12 eqid R𝑠A=R𝑠A
13 12 subrgbas ASubRingRA=BaseR𝑠A
14 11 13 syl φA=BaseR𝑠A
15 4 14 eleqtrd φXBaseR𝑠A
16 5 14 eleqtrd φYBaseR𝑠A
17 12 2 subrg0 ASubRingR0˙=0R𝑠A
18 11 17 syl φ0˙=0R𝑠A
19 6 18 neeqtrd φY0R𝑠A
20 eqid BaseR𝑠A=BaseR𝑠A
21 eqid UnitR𝑠A=UnitR𝑠A
22 eqid 0R𝑠A=0R𝑠A
23 20 21 22 drngunit R𝑠ADivRingYUnitR𝑠AYBaseR𝑠AY0R𝑠A
24 23 biimpar R𝑠ADivRingYBaseR𝑠AY0R𝑠AYUnitR𝑠A
25 9 16 19 24 syl12anc φYUnitR𝑠A
26 eqid /rR𝑠A=/rR𝑠A
27 20 21 26 dvrcl R𝑠ARingXBaseR𝑠AYUnitR𝑠AX/rR𝑠AYBaseR𝑠A
28 10 15 25 27 syl3anc φX/rR𝑠AYBaseR𝑠A
29 12 1 21 26 subrgdv ASubRingRXAYUnitR𝑠AX×˙Y=X/rR𝑠AY
30 11 4 25 29 syl3anc φX×˙Y=X/rR𝑠AY
31 28 30 14 3eltr4d φX×˙YA