Metamath Proof Explorer


Theorem selvffval

Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023)

Ref Expression
Hypotheses selvffval.i φIV
selvffval.r φRW
Assertion selvffval φIselectVarsR=j𝒫IfBaseImPolyRIjmPolyR/ujmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxjjmVaruxcIjmVarRx

Proof

Step Hyp Ref Expression
1 selvffval.i φIV
2 selvffval.r φRW
3 df-selv selectVars=iV,rVj𝒫ifBaseimPolyrijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx
4 3 a1i φselectVars=iV,rVj𝒫ifBaseimPolyrijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx
5 pweq i=I𝒫i=𝒫I
6 5 adantr i=Ir=R𝒫i=𝒫I
7 oveq12 i=Ir=RimPolyr=ImPolyR
8 7 fveq2d i=Ir=RBaseimPolyr=BaseImPolyR
9 difeq1 i=Iij=Ij
10 9 adantr i=Ir=Rij=Ij
11 simpr i=Ir=Rr=R
12 10 11 oveq12d i=Ir=RijmPolyr=IjmPolyR
13 oveq1 i=IievalSubt=IevalSubt
14 13 adantr i=Ir=RievalSubt=IevalSubt
15 14 fveq1d i=Ir=RievalSubtrand=IevalSubtrand
16 15 fveq1d i=Ir=RievalSubtranddf=IevalSubtranddf
17 simpl i=Ir=Ri=I
18 10 11 oveq12d i=Ir=RijmVarr=IjmVarR
19 18 fveq1d i=Ir=RijmVarrx=IjmVarRx
20 19 fveq2d i=Ir=RcijmVarrx=cIjmVarRx
21 20 ifeq2d i=Ir=RifxjjmVaruxcijmVarrx=ifxjjmVaruxcIjmVarRx
22 17 21 mpteq12dv i=Ir=RxiifxjjmVaruxcijmVarrx=xIifxjjmVaruxcIjmVarRx
23 16 22 fveq12d i=Ir=RievalSubtranddfxiifxjjmVaruxcijmVarrx=IevalSubtranddfxIifxjjmVaruxcIjmVarRx
24 23 csbeq2dv i=Ir=RcalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx=calgScu/dIevalSubtranddfxIifxjjmVaruxcIjmVarRx
25 24 csbeq2dv i=Ir=RalgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx=algSct/ccalgScu/dIevalSubtranddfxIifxjjmVaruxcIjmVarRx
26 25 csbeq2dv i=Ir=RjmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx=jmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxjjmVaruxcIjmVarRx
27 12 26 csbeq12dv i=Ir=RijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx=IjmPolyR/ujmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxjjmVaruxcIjmVarRx
28 8 27 mpteq12dv i=Ir=RfBaseimPolyrijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx=fBaseImPolyRIjmPolyR/ujmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxjjmVaruxcIjmVarRx
29 6 28 mpteq12dv i=Ir=Rj𝒫ifBaseimPolyrijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx=j𝒫IfBaseImPolyRIjmPolyR/ujmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxjjmVaruxcIjmVarRx
30 29 adantl φi=Ir=Rj𝒫ifBaseimPolyrijmPolyr/ujmPolyu/talgSct/ccalgScu/dievalSubtranddfxiifxjjmVaruxcijmVarrx=j𝒫IfBaseImPolyRIjmPolyR/ujmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxjjmVaruxcIjmVarRx
31 1 elexd φIV
32 2 elexd φRV
33 1 pwexd φ𝒫IV
34 33 mptexd φj𝒫IfBaseImPolyRIjmPolyR/ujmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxjjmVaruxcIjmVarRxV
35 4 30 31 32 34 ovmpod φIselectVarsR=j𝒫IfBaseImPolyRIjmPolyR/ujmPolyu/talgSct/ccalgScu/dIevalSubtranddfxIifxjjmVaruxcIjmVarRx