Metamath Proof Explorer


Theorem selvffval

Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023)

Ref Expression
Hypotheses selvffval.i φ I V
selvffval.r φ R W
Assertion selvffval φ I selectVars R = j 𝒫 I f Base I mPoly R I j mPoly R / u j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x

Proof

Step Hyp Ref Expression
1 selvffval.i φ I V
2 selvffval.r φ R W
3 df-selv selectVars = i V , r V j 𝒫 i f Base i mPoly r i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x
4 3 a1i φ selectVars = i V , r V j 𝒫 i f Base i mPoly r i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x
5 pweq i = I 𝒫 i = 𝒫 I
6 5 adantr i = I r = R 𝒫 i = 𝒫 I
7 oveq12 i = I r = R i mPoly r = I mPoly R
8 7 fveq2d i = I r = R Base i mPoly r = Base I mPoly R
9 difeq1 i = I i j = I j
10 9 adantr i = I r = R i j = I j
11 simpr i = I r = R r = R
12 10 11 oveq12d i = I r = R i j mPoly r = I j mPoly R
13 oveq1 i = I i evalSub t = I evalSub t
14 13 adantr i = I r = R i evalSub t = I evalSub t
15 14 fveq1d i = I r = R i evalSub t ran d = I evalSub t ran d
16 15 fveq1d i = I r = R i evalSub t ran d d f = I evalSub t ran d d f
17 simpl i = I r = R i = I
18 10 11 oveq12d i = I r = R i j mVar r = I j mVar R
19 18 fveq1d i = I r = R i j mVar r x = I j mVar R x
20 19 fveq2d i = I r = R c i j mVar r x = c I j mVar R x
21 20 ifeq2d i = I r = R if x j j mVar u x c i j mVar r x = if x j j mVar u x c I j mVar R x
22 17 21 mpteq12dv i = I r = R x i if x j j mVar u x c i j mVar r x = x I if x j j mVar u x c I j mVar R x
23 16 22 fveq12d i = I r = R i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x = I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x
24 23 csbeq2dv i = I r = R c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x = c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x
25 24 csbeq2dv i = I r = R algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x = algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x
26 25 csbeq2dv i = I r = R j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x = j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x
27 12 26 csbeq12dv i = I r = R i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x = I j mPoly R / u j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x
28 8 27 mpteq12dv i = I r = R f Base i mPoly r i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x = f Base I mPoly R I j mPoly R / u j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x
29 6 28 mpteq12dv i = I r = R j 𝒫 i f Base i mPoly r i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x = j 𝒫 I f Base I mPoly R I j mPoly R / u j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x
30 29 adantl φ i = I r = R j 𝒫 i f Base i mPoly r i j mPoly r / u j mPoly u / t algSc t / c c algSc u / d i evalSub t ran d d f x i if x j j mVar u x c i j mVar r x = j 𝒫 I f Base I mPoly R I j mPoly R / u j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x
31 1 elexd φ I V
32 2 elexd φ R V
33 1 pwexd φ 𝒫 I V
34 33 mptexd φ j 𝒫 I f Base I mPoly R I j mPoly R / u j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x V
35 4 30 31 32 34 ovmpod φ I selectVars R = j 𝒫 I f Base I mPoly R I j mPoly R / u j mPoly u / t algSc t / c c algSc u / d I evalSub t ran d d f x I if x j j mVar u x c I j mVar R x