Metamath Proof Explorer


Theorem seq1st

Description: A sequence whose iteration function ignores the second argument is only affected by the first point of the initial value function. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses algrf.1 Z=M
algrf.2 R=seqMF1stZ×A
Assertion seq1st MAVR=seqMF1stMA

Proof

Step Hyp Ref Expression
1 algrf.1 Z=M
2 algrf.2 R=seqMF1stZ×A
3 seqfn MseqMF1stZ×AFnM
4 3 adantr MAVseqMF1stZ×AFnM
5 seqfn MseqMF1stMAFnM
6 5 adantr MAVseqMF1stMAFnM
7 fveq2 y=MseqMF1stZ×Ay=seqMF1stZ×AM
8 fveq2 y=MseqMF1stMAy=seqMF1stMAM
9 7 8 eqeq12d y=MseqMF1stZ×Ay=seqMF1stMAyseqMF1stZ×AM=seqMF1stMAM
10 9 imbi2d y=MAVseqMF1stZ×Ay=seqMF1stMAyAVseqMF1stZ×AM=seqMF1stMAM
11 fveq2 y=xseqMF1stZ×Ay=seqMF1stZ×Ax
12 fveq2 y=xseqMF1stMAy=seqMF1stMAx
13 11 12 eqeq12d y=xseqMF1stZ×Ay=seqMF1stMAyseqMF1stZ×Ax=seqMF1stMAx
14 13 imbi2d y=xAVseqMF1stZ×Ay=seqMF1stMAyAVseqMF1stZ×Ax=seqMF1stMAx
15 fveq2 y=x+1seqMF1stZ×Ay=seqMF1stZ×Ax+1
16 fveq2 y=x+1seqMF1stMAy=seqMF1stMAx+1
17 15 16 eqeq12d y=x+1seqMF1stZ×Ay=seqMF1stMAyseqMF1stZ×Ax+1=seqMF1stMAx+1
18 17 imbi2d y=x+1AVseqMF1stZ×Ay=seqMF1stMAyAVseqMF1stZ×Ax+1=seqMF1stMAx+1
19 seq1 MseqMF1stZ×AM=Z×AM
20 19 adantr MAVseqMF1stZ×AM=Z×AM
21 seq1 MseqMF1stMAM=MAM
22 21 adantr MAVseqMF1stMAM=MAM
23 id AVAV
24 uzid MMM
25 24 1 eleqtrrdi MMZ
26 fvconst2g AVMZZ×AM=A
27 23 25 26 syl2anr MAVZ×AM=A
28 fvsng MAVMAM=A
29 27 28 eqtr4d MAVZ×AM=MAM
30 22 29 eqtr4d MAVseqMF1stMAM=Z×AM
31 20 30 eqtr4d MAVseqMF1stZ×AM=seqMF1stMAM
32 31 ex MAVseqMF1stZ×AM=seqMF1stMAM
33 fveq2 seqMF1stZ×Ax=seqMF1stMAxFseqMF1stZ×Ax=FseqMF1stMAx
34 seqp1 xMseqMF1stZ×Ax+1=seqMF1stZ×AxF1stZ×Ax+1
35 fvex seqMF1stZ×AxV
36 fvex Z×Ax+1V
37 35 36 opco1i seqMF1stZ×AxF1stZ×Ax+1=FseqMF1stZ×Ax
38 34 37 eqtrdi xMseqMF1stZ×Ax+1=FseqMF1stZ×Ax
39 seqp1 xMseqMF1stMAx+1=seqMF1stMAxF1stMAx+1
40 fvex seqMF1stMAxV
41 fvex MAx+1V
42 40 41 opco1i seqMF1stMAxF1stMAx+1=FseqMF1stMAx
43 39 42 eqtrdi xMseqMF1stMAx+1=FseqMF1stMAx
44 38 43 eqeq12d xMseqMF1stZ×Ax+1=seqMF1stMAx+1FseqMF1stZ×Ax=FseqMF1stMAx
45 44 adantl AVxMseqMF1stZ×Ax+1=seqMF1stMAx+1FseqMF1stZ×Ax=FseqMF1stMAx
46 33 45 imbitrrid AVxMseqMF1stZ×Ax=seqMF1stMAxseqMF1stZ×Ax+1=seqMF1stMAx+1
47 46 expcom xMAVseqMF1stZ×Ax=seqMF1stMAxseqMF1stZ×Ax+1=seqMF1stMAx+1
48 47 a2d xMAVseqMF1stZ×Ax=seqMF1stMAxAVseqMF1stZ×Ax+1=seqMF1stMAx+1
49 10 14 18 14 32 48 uzind4 xMAVseqMF1stZ×Ax=seqMF1stMAx
50 49 impcom AVxMseqMF1stZ×Ax=seqMF1stMAx
51 50 adantll MAVxMseqMF1stZ×Ax=seqMF1stMAx
52 4 6 51 eqfnfvd MAVseqMF1stZ×A=seqMF1stMA
53 2 52 eqtrid MAVR=seqMF1stMA