Metamath Proof Explorer


Theorem setrec1lem3

Description: Lemma for setrec1 . If each element a of A is covered by a set x recursively generated by F , then there is a single such set covering all of A . The set is constructed explicitly using setrec1lem2 . It turns out that x = A also works, i.e., given the hypotheses it is possible to prove that A e. Y . I don't know if proving this fact directly using setrec1lem1 would be any easier than the current proof using setrec1lem2 , and it would only slightly simplify the proof of setrec1 . Other than the use of bnd2d , this is a purely technical theorem for rearranging notation from that of setrec1lem2 to that of setrec1 . (Contributed by Emmett Weisz, 20-Jan-2021) (New usage is discouraged.)

Ref Expression
Hypotheses setrec1lem3.1 Y=y|zwwywzFwzyz
setrec1lem3.2 φAV
setrec1lem3.3 φaAxaxxY
Assertion setrec1lem3 φxAxxY

Proof

Step Hyp Ref Expression
1 setrec1lem3.1 Y=y|zwwywzFwzyz
2 setrec1lem3.2 φAV
3 setrec1lem3.3 φaAxaxxY
4 exancom xaxxYxxYax
5 4 ralbii aAxaxxYaAxxYax
6 3 5 sylib φaAxxYax
7 df-rex xYaxxxYax
8 7 ralbii aAxYaxaAxxYax
9 6 8 sylibr φaAxYax
10 2 9 bnd2d φvvYaAxvax
11 exancom xxvaxxaxxv
12 df-rex xvaxxxvax
13 eluni avxaxxv
14 11 12 13 3bitr4i xvaxav
15 14 ralbii aAxvaxaAav
16 dfss3 AvaAav
17 15 16 bitr4i aAxvaxAv
18 17 anbi2i vYaAxvaxvYAv
19 18 exbii vvYaAxvaxvvYAv
20 10 19 sylib φvvYAv
21 vex vV
22 21 a1i vYvV
23 id vYvY
24 1 22 23 setrec1lem2 vYvY
25 24 anim1i vYAvvYAv
26 25 ancomd vYAvAvvY
27 21 uniex vV
28 sseq2 x=vAxAv
29 eleq1 x=vxYvY
30 28 29 anbi12d x=vAxxYAvvY
31 27 30 spcev AvvYxAxxY
32 26 31 syl vYAvxAxxY
33 32 exlimiv vvYAvxAxxY
34 20 33 syl φxAxxY