Metamath Proof Explorer


Theorem setsmstopn

Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses setsms.x φX=BaseM
setsms.d φD=distMX×X
setsms.k φK=MsSetTopSetndxMetOpenD
setsms.m φMV
Assertion setsmstopn φMetOpenD=TopOpenK

Proof

Step Hyp Ref Expression
1 setsms.x φX=BaseM
2 setsms.d φD=distMX×X
3 setsms.k φK=MsSetTopSetndxMetOpenD
4 setsms.m φMV
5 1 2 3 4 setsmstset φMetOpenD=TopSetK
6 df-mopn MetOpen=xran∞MettopGenranballx
7 6 dmmptss domMetOpenran∞Met
8 7 sseli DdomMetOpenDran∞Met
9 simpr φDran∞MetDran∞Met
10 xmetunirn Dran∞MetD∞MetdomdomD
11 9 10 sylib φDran∞MetD∞MetdomdomD
12 eqid MetOpenD=MetOpenD
13 12 mopnuni D∞MetdomdomDdomdomD=MetOpenD
14 11 13 syl φDran∞MetdomdomD=MetOpenD
15 2 dmeqd φdomD=domdistMX×X
16 dmres domdistMX×X=X×XdomdistM
17 15 16 eqtrdi φdomD=X×XdomdistM
18 inss1 X×XdomdistMX×X
19 17 18 eqsstrdi φdomDX×X
20 dmss domDX×XdomdomDdomX×X
21 19 20 syl φdomdomDdomX×X
22 dmxpid domX×X=X
23 21 22 sseqtrdi φdomdomDX
24 23 adantr φDran∞MetdomdomDX
25 14 24 eqsstrrd φDran∞MetMetOpenDX
26 sspwuni MetOpenD𝒫XMetOpenDX
27 25 26 sylibr φDran∞MetMetOpenD𝒫X
28 27 ex φDran∞MetMetOpenD𝒫X
29 8 28 syl5 φDdomMetOpenMetOpenD𝒫X
30 ndmfv ¬DdomMetOpenMetOpenD=
31 0ss 𝒫X
32 30 31 eqsstrdi ¬DdomMetOpenMetOpenD𝒫X
33 29 32 pm2.61d1 φMetOpenD𝒫X
34 1 2 3 setsmsbas φX=BaseK
35 34 pweqd φ𝒫X=𝒫BaseK
36 33 5 35 3sstr3d φTopSetK𝒫BaseK
37 eqid BaseK=BaseK
38 eqid TopSetK=TopSetK
39 37 38 topnid TopSetK𝒫BaseKTopSetK=TopOpenK
40 36 39 syl φTopSetK=TopOpenK
41 5 40 eqtrd φMetOpenD=TopOpenK