Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0isummpt2.kph | |
|
sge0isummpt2.a | |
||
sge0isummpt2.m | |
||
sge0isummpt2.z | |
||
sge0isummpt2.b | |
||
Assertion | sge0isummpt2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0isummpt2.kph | |
|
2 | sge0isummpt2.a | |
|
3 | sge0isummpt2.m | |
|
4 | sge0isummpt2.z | |
|
5 | sge0isummpt2.b | |
|
6 | simpr | |
|
7 | nfv | |
|
8 | 1 7 | nfan | |
9 | nfcv | |
|
10 | 9 | nfcsb1 | |
11 | 10 | nfel1 | |
12 | 8 11 | nfim | |
13 | eleq1w | |
|
14 | 13 | anbi2d | |
15 | csbeq1a | |
|
16 | 15 | eleq1d | |
17 | 14 16 | imbi12d | |
18 | 12 17 2 | chvarfv | |
19 | nfcv | |
|
20 | nfcsb1v | |
|
21 | csbeq1a | |
|
22 | 19 20 21 | cbvmpt | |
23 | 22 | eqcomi | |
24 | 9 10 15 23 | fvmptf | |
25 | 6 18 24 | syl2anc | |
26 | rge0ssre | |
|
27 | ax-resscn | |
|
28 | 26 27 | sstri | |
29 | 28 18 | sselid | |
30 | 22 | a1i | |
31 | 30 | seqeq3d | |
32 | 31 | breq1d | |
33 | 5 32 | mpbid | |
34 | 4 3 25 29 33 | isumclim | |
35 | nfcv | |
|
36 | nfcv | |
|
37 | nfcv | |
|
38 | 15 35 36 37 10 | cbvsum | |
39 | 38 | a1i | |
40 | 1 2 3 4 5 | sge0isummpt | |
41 | 34 39 40 | 3eqtr4rd | |