Metamath Proof Explorer


Theorem sge0isummpt2

Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0isummpt2.kph kφ
sge0isummpt2.a φkZA0+∞
sge0isummpt2.m φM
sge0isummpt2.z Z=M
sge0isummpt2.b φseqM+kZAB
Assertion sge0isummpt2 φsum^kZA=kZA

Proof

Step Hyp Ref Expression
1 sge0isummpt2.kph kφ
2 sge0isummpt2.a φkZA0+∞
3 sge0isummpt2.m φM
4 sge0isummpt2.z Z=M
5 sge0isummpt2.b φseqM+kZAB
6 simpr φjZjZ
7 nfv kjZ
8 1 7 nfan kφjZ
9 nfcv _kj
10 9 nfcsb1 _kj/kA
11 10 nfel1 kj/kA0+∞
12 8 11 nfim kφjZj/kA0+∞
13 eleq1w k=jkZjZ
14 13 anbi2d k=jφkZφjZ
15 csbeq1a k=jA=j/kA
16 15 eleq1d k=jA0+∞j/kA0+∞
17 14 16 imbi12d k=jφkZA0+∞φjZj/kA0+∞
18 12 17 2 chvarfv φjZj/kA0+∞
19 nfcv _iA
20 nfcsb1v _ki/kA
21 csbeq1a k=iA=i/kA
22 19 20 21 cbvmpt kZA=iZi/kA
23 22 eqcomi iZi/kA=kZA
24 9 10 15 23 fvmptf jZj/kA0+∞iZi/kAj=j/kA
25 6 18 24 syl2anc φjZiZi/kAj=j/kA
26 rge0ssre 0+∞
27 ax-resscn
28 26 27 sstri 0+∞
29 28 18 sselid φjZj/kA
30 22 a1i φkZA=iZi/kA
31 30 seqeq3d φseqM+kZA=seqM+iZi/kA
32 31 breq1d φseqM+kZABseqM+iZi/kAB
33 5 32 mpbid φseqM+iZi/kAB
34 4 3 25 29 33 isumclim φjZj/kA=B
35 nfcv _jZ
36 nfcv _kZ
37 nfcv _jA
38 15 35 36 37 10 cbvsum kZA=jZj/kA
39 38 a1i φkZA=jZj/kA
40 1 2 3 4 5 sge0isummpt φsum^kZA=B
41 34 39 40 3eqtr4rd φsum^kZA=kZA