Step |
Hyp |
Ref |
Expression |
1 |
|
sge0isummpt2.kph |
|
2 |
|
sge0isummpt2.a |
|
3 |
|
sge0isummpt2.m |
|
4 |
|
sge0isummpt2.z |
|
5 |
|
sge0isummpt2.b |
|
6 |
|
simpr |
|
7 |
|
nfv |
|
8 |
1 7
|
nfan |
|
9 |
|
nfcv |
|
10 |
9
|
nfcsb1 |
|
11 |
10
|
nfel1 |
|
12 |
8 11
|
nfim |
|
13 |
|
eleq1w |
|
14 |
13
|
anbi2d |
|
15 |
|
csbeq1a |
|
16 |
15
|
eleq1d |
|
17 |
14 16
|
imbi12d |
|
18 |
12 17 2
|
chvarfv |
|
19 |
|
nfcv |
|
20 |
|
nfcsb1v |
|
21 |
|
csbeq1a |
|
22 |
19 20 21
|
cbvmpt |
|
23 |
22
|
eqcomi |
|
24 |
9 10 15 23
|
fvmptf |
|
25 |
6 18 24
|
syl2anc |
|
26 |
|
rge0ssre |
|
27 |
|
ax-resscn |
|
28 |
26 27
|
sstri |
|
29 |
28 18
|
sseldi |
|
30 |
22
|
a1i |
|
31 |
30
|
seqeq3d |
|
32 |
31
|
breq1d |
|
33 |
5 32
|
mpbid |
|
34 |
4 3 25 29 33
|
isumclim |
|
35 |
|
nfcv |
|
36 |
|
nfcv |
|
37 |
|
nfcv |
|
38 |
15 35 36 37 10
|
cbvsum |
|
39 |
38
|
a1i |
|
40 |
1 2 3 4 5
|
sge0isummpt |
|
41 |
34 39 40
|
3eqtr4rd |
|