Metamath Proof Explorer


Theorem sge0p1

Description: The addition of the next term in a finite sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0p1.1 φ N M
sge0p1.2 φ k M N + 1 A 0 +∞
sge0p1.3 k = N + 1 A = B
Assertion sge0p1 φ sum^ k M N + 1 A = sum^ k M N A + 𝑒 B

Proof

Step Hyp Ref Expression
1 sge0p1.1 φ N M
2 sge0p1.2 φ k M N + 1 A 0 +∞
3 sge0p1.3 k = N + 1 A = B
4 fzsuc N M M N + 1 = M N N + 1
5 1 4 syl φ M N + 1 = M N N + 1
6 5 mpteq1d φ k M N + 1 A = k M N N + 1 A
7 6 fveq2d φ sum^ k M N + 1 A = sum^ k M N N + 1 A
8 nfv k φ
9 ovex M N V
10 9 a1i φ M N V
11 snex N + 1 V
12 11 a1i φ N + 1 V
13 fzp1disj M N N + 1 =
14 13 a1i φ M N N + 1 =
15 0xr 0 *
16 15 a1i φ k M N 0 *
17 pnfxr +∞ *
18 17 a1i φ k M N +∞ *
19 iccssxr 0 +∞ *
20 simpl φ k M N φ
21 fzelp1 k M N k M N + 1
22 21 adantl φ k M N k M N + 1
23 20 22 2 syl2anc φ k M N A 0 +∞
24 19 23 sselid φ k M N A *
25 iccgelb 0 * +∞ * A 0 +∞ 0 A
26 16 18 23 25 syl3anc φ k M N 0 A
27 iccleub 0 * +∞ * A 0 +∞ A +∞
28 16 18 23 27 syl3anc φ k M N A +∞
29 16 18 24 26 28 eliccxrd φ k M N A 0 +∞
30 simpl φ k N + 1 φ
31 elsni k N + 1 k = N + 1
32 31 adantl φ k N + 1 k = N + 1
33 simpr φ k = N + 1 k = N + 1
34 peano2uz N M N + 1 M
35 eluzfz2 N + 1 M N + 1 M N + 1
36 1 34 35 3syl φ N + 1 M N + 1
37 36 adantr φ k = N + 1 N + 1 M N + 1
38 33 37 eqeltrd φ k = N + 1 k M N + 1
39 30 32 38 syl2anc φ k N + 1 k M N + 1
40 30 39 2 syl2anc φ k N + 1 A 0 +∞
41 8 10 12 14 29 40 sge0splitmpt φ sum^ k M N N + 1 A = sum^ k M N A + 𝑒 sum^ k N + 1 A
42 ovex N + 1 V
43 42 a1i φ N + 1 V
44 id φ φ
45 eleq1 k = N + 1 k M N + 1 N + 1 M N + 1
46 45 anbi2d k = N + 1 φ k M N + 1 φ N + 1 M N + 1
47 3 eleq1d k = N + 1 A 0 +∞ B 0 +∞
48 46 47 imbi12d k = N + 1 φ k M N + 1 A 0 +∞ φ N + 1 M N + 1 B 0 +∞
49 48 2 vtoclg N + 1 V φ N + 1 M N + 1 B 0 +∞
50 42 49 ax-mp φ N + 1 M N + 1 B 0 +∞
51 44 36 50 syl2anc φ B 0 +∞
52 43 51 3 sge0snmpt φ sum^ k N + 1 A = B
53 52 oveq2d φ sum^ k M N A + 𝑒 sum^ k N + 1 A = sum^ k M N A + 𝑒 B
54 7 41 53 3eqtrd φ sum^ k M N + 1 A = sum^ k M N A + 𝑒 B