Metamath Proof Explorer


Theorem sge0prle

Description: The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0prle.a φAV
sge0prle.b φBW
sge0prle.d φD0+∞
sge0prle.e φE0+∞
sge0prle.cd k=AC=D
sge0prle.ce k=BC=E
Assertion sge0prle φsum^kABCD+𝑒E

Proof

Step Hyp Ref Expression
1 sge0prle.a φAV
2 sge0prle.b φBW
3 sge0prle.d φD0+∞
4 sge0prle.e φE0+∞
5 sge0prle.cd k=AC=D
6 sge0prle.ce k=BC=E
7 preq1 A=BAB=BB
8 dfsn2 B=BB
9 8 eqcomi BB=B
10 9 a1i A=BBB=B
11 7 10 eqtrd A=BAB=B
12 11 mpteq1d A=BkABC=kBC
13 12 fveq2d A=Bsum^kABC=sum^kBC
14 13 adantl φA=Bsum^kABC=sum^kBC
15 2 4 6 sge0snmpt φsum^kBC=E
16 15 adantr φA=Bsum^kBC=E
17 14 16 eqtrd φA=Bsum^kABC=E
18 iccssxr 0+∞*
19 18 4 sselid φE*
20 19 xaddlidd φ0+𝑒E=E
21 20 eqcomd φE=0+𝑒E
22 0xr 0*
23 22 a1i φ0*
24 18 3 sselid φD*
25 pnfxr +∞*
26 25 a1i φ+∞*
27 iccgelb 0*+∞*D0+∞0D
28 23 26 3 27 syl3anc φ0D
29 23 24 19 28 xleadd1d φ0+𝑒ED+𝑒E
30 21 29 eqbrtrd φED+𝑒E
31 30 adantr φA=BED+𝑒E
32 17 31 eqbrtrd φA=Bsum^kABCD+𝑒E
33 1 adantr φ¬A=BAV
34 2 adantr φ¬A=BBW
35 3 adantr φ¬A=BD0+∞
36 4 adantr φ¬A=BE0+∞
37 neqne ¬A=BAB
38 37 adantl φ¬A=BAB
39 33 34 35 36 5 6 38 sge0pr φ¬A=Bsum^kABC=D+𝑒E
40 24 19 xaddcld φD+𝑒E*
41 40 xrleidd φD+𝑒ED+𝑒E
42 41 adantr φ¬A=BD+𝑒ED+𝑒E
43 39 42 eqbrtrd φ¬A=Bsum^kABCD+𝑒E
44 32 43 pm2.61dan φsum^kABCD+𝑒E