Description: The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr . (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0prle.a | |
|
sge0prle.b | |
||
sge0prle.d | |
||
sge0prle.e | |
||
sge0prle.cd | |
||
sge0prle.ce | |
||
Assertion | sge0prle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0prle.a | |
|
2 | sge0prle.b | |
|
3 | sge0prle.d | |
|
4 | sge0prle.e | |
|
5 | sge0prle.cd | |
|
6 | sge0prle.ce | |
|
7 | preq1 | |
|
8 | dfsn2 | |
|
9 | 8 | eqcomi | |
10 | 9 | a1i | |
11 | 7 10 | eqtrd | |
12 | 11 | mpteq1d | |
13 | 12 | fveq2d | |
14 | 13 | adantl | |
15 | 2 4 6 | sge0snmpt | |
16 | 15 | adantr | |
17 | 14 16 | eqtrd | |
18 | iccssxr | |
|
19 | 18 4 | sselid | |
20 | 19 | xaddlidd | |
21 | 20 | eqcomd | |
22 | 0xr | |
|
23 | 22 | a1i | |
24 | 18 3 | sselid | |
25 | pnfxr | |
|
26 | 25 | a1i | |
27 | iccgelb | |
|
28 | 23 26 3 27 | syl3anc | |
29 | 23 24 19 28 | xleadd1d | |
30 | 21 29 | eqbrtrd | |
31 | 30 | adantr | |
32 | 17 31 | eqbrtrd | |
33 | 1 | adantr | |
34 | 2 | adantr | |
35 | 3 | adantr | |
36 | 4 | adantr | |
37 | neqne | |
|
38 | 37 | adantl | |
39 | 33 34 35 36 5 6 38 | sge0pr | |
40 | 24 19 | xaddcld | |
41 | 40 | xrleidd | |
42 | 41 | adantr | |
43 | 39 42 | eqbrtrd | |
44 | 32 43 | pm2.61dan | |