Metamath Proof Explorer


Theorem sge0xp

Description: Combine two generalized sums of nonnegative extended reals into a single generalized sum over the cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0xp.1 kφ
sge0xp.z z=jkD=C
sge0xp.a φAV
sge0xp.b φBW
sge0xp.d φjAkBC0+∞
Assertion sge0xp φsum^jAsum^kBC=sum^zA×BD

Proof

Step Hyp Ref Expression
1 sge0xp.1 kφ
2 sge0xp.z z=jkD=C
3 sge0xp.a φAV
4 sge0xp.b φBW
5 sge0xp.d φjAkBC0+∞
6 vsnex jV
7 6 a1i φjV
8 7 4 xpexd φj×BV
9 8 adantr φjAj×BV
10 disjsnxp DisjjAj×B
11 10 a1i φDisjjAj×B
12 vex jV
13 elsnxp jVzj×BkBz=jk
14 12 13 ax-mp zj×BkBz=jk
15 14 biimpi zj×BkBz=jk
16 15 adantl φjAzj×BkBz=jk
17 nfv kjA
18 1 17 nfan kφjA
19 nfv kzj×B
20 18 19 nfan kφjAzj×B
21 nfv kD0+∞
22 2 3ad2ant3 φjAkBz=jkD=C
23 5 3expa φjAkBC0+∞
24 23 3adant3 φjAkBz=jkC0+∞
25 22 24 eqeltrd φjAkBz=jkD0+∞
26 25 3exp φjAkBz=jkD0+∞
27 26 adantr φjAzj×BkBz=jkD0+∞
28 20 21 27 rexlimd φjAzj×BkBz=jkD0+∞
29 16 28 mpd φjAzj×BD0+∞
30 29 3impa φjAzj×BD0+∞
31 3 9 11 30 sge0iunmpt φsum^zjAj×BD=sum^jAsum^zj×BD
32 iunxpconst jAj×B=A×B
33 32 eqcomi A×B=jAj×B
34 33 a1i φA×B=jAj×B
35 34 mpteq1d φzA×BD=zjAj×BD
36 35 fveq2d φsum^zA×BD=sum^zjAj×BD
37 nfv jφ
38 nfv zφjA
39 4 adantr φjABW
40 simpr φjAjA
41 eqid iBji=iBji
42 40 41 projf1o φjAiBji:B1-1 ontoj×B
43 eqidd φkBiBji=iBji
44 opeq2 i=kji=jk
45 44 adantl φkBi=kji=jk
46 simpr φkBkB
47 opex jkV
48 47 a1i φkBjkV
49 43 45 46 48 fvmptd φkBiBjik=jk
50 49 adantlr φjAkBiBjik=jk
51 38 18 2 39 42 50 29 sge0f1o φjAsum^zj×BD=sum^kBC
52 51 eqcomd φjAsum^kBC=sum^zj×BD
53 37 52 mpteq2da φjAsum^kBC=jAsum^zj×BD
54 53 fveq2d φsum^jAsum^kBC=sum^jAsum^zj×BD
55 31 36 54 3eqtr4rd φsum^jAsum^kBC=sum^zA×BD