Description: Combine two generalized sums of nonnegative extended reals into a single generalized sum over the cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0xp.1 | |
|
sge0xp.z | |
||
sge0xp.a | |
||
sge0xp.b | |
||
sge0xp.d | |
||
Assertion | sge0xp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0xp.1 | |
|
2 | sge0xp.z | |
|
3 | sge0xp.a | |
|
4 | sge0xp.b | |
|
5 | sge0xp.d | |
|
6 | vsnex | |
|
7 | 6 | a1i | |
8 | 7 4 | xpexd | |
9 | 8 | adantr | |
10 | disjsnxp | |
|
11 | 10 | a1i | |
12 | vex | |
|
13 | elsnxp | |
|
14 | 12 13 | ax-mp | |
15 | 14 | biimpi | |
16 | 15 | adantl | |
17 | nfv | |
|
18 | 1 17 | nfan | |
19 | nfv | |
|
20 | 18 19 | nfan | |
21 | nfv | |
|
22 | 2 | 3ad2ant3 | |
23 | 5 | 3expa | |
24 | 23 | 3adant3 | |
25 | 22 24 | eqeltrd | |
26 | 25 | 3exp | |
27 | 26 | adantr | |
28 | 20 21 27 | rexlimd | |
29 | 16 28 | mpd | |
30 | 29 | 3impa | |
31 | 3 9 11 30 | sge0iunmpt | |
32 | iunxpconst | |
|
33 | 32 | eqcomi | |
34 | 33 | a1i | |
35 | 34 | mpteq1d | |
36 | 35 | fveq2d | |
37 | nfv | |
|
38 | nfv | |
|
39 | 4 | adantr | |
40 | simpr | |
|
41 | eqid | |
|
42 | 40 41 | projf1o | |
43 | eqidd | |
|
44 | opeq2 | |
|
45 | 44 | adantl | |
46 | simpr | |
|
47 | opex | |
|
48 | 47 | a1i | |
49 | 43 45 46 48 | fvmptd | |
50 | 49 | adantlr | |
51 | 38 18 2 39 42 50 29 | sge0f1o | |
52 | 51 | eqcomd | |
53 | 37 52 | mpteq2da | |
54 | 53 | fveq2d | |
55 | 31 36 54 | 3eqtr4rd | |