| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfdiv.x |  | 
						
							| 2 |  | smfdiv.s |  | 
						
							| 3 |  | smfdiv.a |  | 
						
							| 4 |  | smfdiv.b |  | 
						
							| 5 |  | smfdiv.c |  | 
						
							| 6 |  | smfdiv.d |  | 
						
							| 7 |  | smfdiv.m |  | 
						
							| 8 |  | smfdiv.n |  | 
						
							| 9 |  | smfdiv.e |  | 
						
							| 10 |  | elinel1 |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 | 11 4 | syldan |  | 
						
							| 13 | 12 | recnd |  | 
						
							| 14 |  | ssrab2 |  | 
						
							| 15 | 9 14 | eqsstri |  | 
						
							| 16 |  | elinel2 |  | 
						
							| 17 | 15 16 | sselid |  | 
						
							| 18 | 17 | adantl |  | 
						
							| 19 | 18 6 | syldan |  | 
						
							| 20 | 19 | recnd |  | 
						
							| 21 | 9 | eleq2i |  | 
						
							| 22 | 21 | biimpi |  | 
						
							| 23 |  | rabidim2 |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 | 16 24 | syl |  | 
						
							| 26 | 25 | adantl |  | 
						
							| 27 | 13 20 26 | divrecd |  | 
						
							| 28 | 1 27 | mpteq2da |  | 
						
							| 29 |  | 1red |  | 
						
							| 30 | 15 | sseli |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 | 31 6 | syldan |  | 
						
							| 33 | 24 | adantl |  | 
						
							| 34 | 29 32 33 | redivcld |  | 
						
							| 35 | 1 2 5 6 8 9 | smfrec |  | 
						
							| 36 | 1 2 3 4 34 7 35 | smfmul |  | 
						
							| 37 | 28 36 | eqeltrd |  |