Step |
Hyp |
Ref |
Expression |
1 |
|
smfdiv.x |
|
2 |
|
smfdiv.s |
|
3 |
|
smfdiv.a |
|
4 |
|
smfdiv.b |
|
5 |
|
smfdiv.c |
|
6 |
|
smfdiv.d |
|
7 |
|
smfdiv.m |
|
8 |
|
smfdiv.n |
|
9 |
|
smfdiv.e |
|
10 |
|
elinel1 |
|
11 |
10
|
adantl |
|
12 |
11 4
|
syldan |
|
13 |
12
|
recnd |
|
14 |
|
ssrab2 |
|
15 |
9 14
|
eqsstri |
|
16 |
|
elinel2 |
|
17 |
15 16
|
sselid |
|
18 |
17
|
adantl |
|
19 |
18 6
|
syldan |
|
20 |
19
|
recnd |
|
21 |
9
|
eleq2i |
|
22 |
21
|
biimpi |
|
23 |
|
rabidim2 |
|
24 |
22 23
|
syl |
|
25 |
16 24
|
syl |
|
26 |
25
|
adantl |
|
27 |
13 20 26
|
divrecd |
|
28 |
1 27
|
mpteq2da |
|
29 |
|
1red |
|
30 |
15
|
sseli |
|
31 |
30
|
adantl |
|
32 |
31 6
|
syldan |
|
33 |
24
|
adantl |
|
34 |
29 32 33
|
redivcld |
|
35 |
1 2 5 6 8 9
|
smfrec |
|
36 |
1 2 3 4 34 7 35
|
smfmul |
|
37 |
28 36
|
eqeltrd |
|