Metamath Proof Explorer


Theorem smflimsuplem6

Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem6.a n φ
smflimsuplem6.b m φ
smflimsuplem6.m φ M
smflimsuplem6.z Z = M
smflimsuplem6.s φ S SAlg
smflimsuplem6.f φ F : Z SMblFn S
smflimsuplem6.e E = n Z x m n dom F m | sup ran m n F m x * <
smflimsuplem6.h H = n Z x E n sup ran m n F m x * <
smflimsuplem6.r φ lim sup m Z F m X
smflimsuplem6.n φ N Z
smflimsuplem6.x φ X m N dom F m
Assertion smflimsuplem6 φ n Z H n X dom

Proof

Step Hyp Ref Expression
1 smflimsuplem6.a n φ
2 smflimsuplem6.b m φ
3 smflimsuplem6.m φ M
4 smflimsuplem6.z Z = M
5 smflimsuplem6.s φ S SAlg
6 smflimsuplem6.f φ F : Z SMblFn S
7 smflimsuplem6.e E = n Z x m n dom F m | sup ran m n F m x * <
8 smflimsuplem6.h H = n Z x E n sup ran m n F m x * <
9 smflimsuplem6.r φ lim sup m Z F m X
10 smflimsuplem6.n φ N Z
11 smflimsuplem6.x φ X m N dom F m
12 4 fvexi Z V
13 12 a1i φ Z V
14 13 mptexd φ n Z H n X V
15 fvexd φ lim sup m N F m X V
16 1 2 3 4 5 6 7 8 9 10 11 smflimsuplem5 φ n N H n X lim sup m N F m X
17 fvexd φ N V
18 4 eluzelz2 N Z N
19 10 18 syl φ N
20 eqid N = N
21 4 eleq2i N Z N M
22 21 biimpi N Z N M
23 uzss N M N M
24 22 23 syl N Z N M
25 24 4 sseqtrrdi N Z N Z
26 10 25 syl φ N Z
27 ssid N N
28 27 a1i φ N N
29 fvexd φ n N H n X V
30 1 13 17 19 20 26 28 29 climeqmpt φ n Z H n X lim sup m N F m X n N H n X lim sup m N F m X
31 16 30 mpbird φ n Z H n X lim sup m N F m X
32 breldmg n Z H n X V lim sup m N F m X V n Z H n X lim sup m N F m X n Z H n X dom
33 14 15 31 32 syl3anc φ n Z H n X dom