Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smflimsuplem6.a | |
|
smflimsuplem6.b | |
||
smflimsuplem6.m | |
||
smflimsuplem6.z | |
||
smflimsuplem6.s | |
||
smflimsuplem6.f | |
||
smflimsuplem6.e | |
||
smflimsuplem6.h | |
||
smflimsuplem6.r | |
||
smflimsuplem6.n | |
||
smflimsuplem6.x | |
||
Assertion | smflimsuplem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smflimsuplem6.a | |
|
2 | smflimsuplem6.b | |
|
3 | smflimsuplem6.m | |
|
4 | smflimsuplem6.z | |
|
5 | smflimsuplem6.s | |
|
6 | smflimsuplem6.f | |
|
7 | smflimsuplem6.e | |
|
8 | smflimsuplem6.h | |
|
9 | smflimsuplem6.r | |
|
10 | smflimsuplem6.n | |
|
11 | smflimsuplem6.x | |
|
12 | 4 | fvexi | |
13 | 12 | a1i | |
14 | 13 | mptexd | |
15 | fvexd | |
|
16 | 1 2 3 4 5 6 7 8 9 10 11 | smflimsuplem5 | |
17 | fvexd | |
|
18 | 4 | eluzelz2 | |
19 | 10 18 | syl | |
20 | eqid | |
|
21 | 4 | eleq2i | |
22 | 21 | biimpi | |
23 | uzss | |
|
24 | 22 23 | syl | |
25 | 24 4 | sseqtrrdi | |
26 | 10 25 | syl | |
27 | ssid | |
|
28 | 27 | a1i | |
29 | fvexd | |
|
30 | 1 13 17 19 20 26 28 29 | climeqmpt | |
31 | 16 30 | mpbird | |
32 | breldmg | |
|
33 | 14 15 31 32 | syl3anc | |