Metamath Proof Explorer


Theorem smflimsuplem6

Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem6.a nφ
smflimsuplem6.b mφ
smflimsuplem6.m φM
smflimsuplem6.z Z=M
smflimsuplem6.s φSSAlg
smflimsuplem6.f φF:ZSMblFnS
smflimsuplem6.e E=nZxmndomFm|supranmnFmx*<
smflimsuplem6.h H=nZxEnsupranmnFmx*<
smflimsuplem6.r φlim supmZFmX
smflimsuplem6.n φNZ
smflimsuplem6.x φXmNdomFm
Assertion smflimsuplem6 φnZHnXdom

Proof

Step Hyp Ref Expression
1 smflimsuplem6.a nφ
2 smflimsuplem6.b mφ
3 smflimsuplem6.m φM
4 smflimsuplem6.z Z=M
5 smflimsuplem6.s φSSAlg
6 smflimsuplem6.f φF:ZSMblFnS
7 smflimsuplem6.e E=nZxmndomFm|supranmnFmx*<
8 smflimsuplem6.h H=nZxEnsupranmnFmx*<
9 smflimsuplem6.r φlim supmZFmX
10 smflimsuplem6.n φNZ
11 smflimsuplem6.x φXmNdomFm
12 4 fvexi ZV
13 12 a1i φZV
14 13 mptexd φnZHnXV
15 fvexd φlim supmNFmXV
16 1 2 3 4 5 6 7 8 9 10 11 smflimsuplem5 φnNHnXlim supmNFmX
17 fvexd φNV
18 4 eluzelz2 NZN
19 10 18 syl φN
20 eqid N=N
21 4 eleq2i NZNM
22 21 biimpi NZNM
23 uzss NMNM
24 22 23 syl NZNM
25 24 4 sseqtrrdi NZNZ
26 10 25 syl φNZ
27 ssid NN
28 27 a1i φNN
29 fvexd φnNHnXV
30 1 13 17 19 20 26 28 29 climeqmpt φnZHnXlim supmNFmXnNHnXlim supmNFmX
31 16 30 mpbird φnZHnXlim supmNFmX
32 breldmg nZHnXVlim supmNFmXVnZHnXlim supmNFmXnZHnXdom
33 14 15 31 32 syl3anc φnZHnXdom