Step |
Hyp |
Ref |
Expression |
1 |
|
smfmullem3.r |
|
2 |
|
smfmullem3.k |
|
3 |
|
smfmullem3.u |
|
4 |
|
smfmullem3.v |
|
5 |
|
smfmullem3.l |
|
6 |
|
smfmullem3.x |
|
7 |
|
smfmullem3.y |
|
8 |
7
|
a1i |
|
9 |
|
1rp |
|
10 |
9
|
a1i |
|
11 |
6
|
a1i |
|
12 |
3 4
|
remulcld |
|
13 |
|
difrp |
|
14 |
12 1 13
|
syl2anc |
|
15 |
5 14
|
mpbid |
|
16 |
|
1re |
|
17 |
16
|
a1i |
|
18 |
3
|
recnd |
|
19 |
18
|
abscld |
|
20 |
4
|
recnd |
|
21 |
20
|
abscld |
|
22 |
19 21
|
readdcld |
|
23 |
17 22
|
readdcld |
|
24 |
|
0re |
|
25 |
24
|
a1i |
|
26 |
10
|
rpgt0d |
|
27 |
|
0red |
|
28 |
18
|
absge0d |
|
29 |
20
|
absge0d |
|
30 |
19 21
|
addge01d |
|
31 |
29 30
|
mpbid |
|
32 |
27 19 22 28 31
|
letrd |
|
33 |
17 22
|
addge01d |
|
34 |
32 33
|
mpbid |
|
35 |
25 17 23 26 34
|
ltletrd |
|
36 |
23 35
|
elrpd |
|
37 |
15 36
|
rpdivcld |
|
38 |
11 37
|
eqeltrd |
|
39 |
10 38
|
ifcld |
|
40 |
8 39
|
eqeltrd |
|
41 |
40
|
rpred |
|
42 |
3 41
|
resubcld |
|
43 |
42
|
rexrd |
|
44 |
3
|
rexrd |
|
45 |
3 40
|
ltsubrpd |
|
46 |
43 44 45
|
qelioo |
|
47 |
3 41
|
readdcld |
|
48 |
47
|
rexrd |
|
49 |
3 40
|
ltaddrpd |
|
50 |
44 48 49
|
qelioo |
|
51 |
50
|
ad2antrr |
|
52 |
|
simp-4l |
|
53 |
4 41
|
resubcld |
|
54 |
53
|
rexrd |
|
55 |
4
|
rexrd |
|
56 |
4 40
|
ltsubrpd |
|
57 |
54 55 56
|
qelioo |
|
58 |
52 57
|
syl |
|
59 |
52
|
ad2antrr |
|
60 |
4 41
|
readdcld |
|
61 |
60
|
rexrd |
|
62 |
4 40
|
ltaddrpd |
|
63 |
55 61 62
|
qelioo |
|
64 |
59 63
|
syl |
|
65 |
1
|
ad8antr |
|
66 |
3
|
ad8antr |
|
67 |
4
|
ad8antr |
|
68 |
5
|
ad8antr |
|
69 |
|
simp-8r |
|
70 |
|
simp-6r |
|
71 |
|
simp-4r |
|
72 |
|
simplr |
|
73 |
|
simp-7r |
|
74 |
|
simp-5r |
|
75 |
|
simpllr |
|
76 |
|
simpr |
|
77 |
65 2 66 67 68 69 70 71 72 73 74 75 76 6 7
|
smfmullem2 |
|
78 |
77
|
rexlimdva2 |
|
79 |
64 78
|
mpd |
|
80 |
79
|
rexlimdva2 |
|
81 |
58 80
|
mpd |
|
82 |
81
|
rexlimdva2 |
|
83 |
51 82
|
mpd |
|
84 |
83
|
rexlimdva2 |
|
85 |
46 84
|
mpd |
|