Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfpimioompt.x | |
|
smfpimioompt.s | |
||
smfpimioompt.a | |
||
smfpimioompt.b | |
||
smfpimioompt.m | |
||
smfpimioompt.l | |
||
smfpimioompt.r | |
||
Assertion | smfpimioompt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimioompt.x | |
|
2 | smfpimioompt.s | |
|
3 | smfpimioompt.a | |
|
4 | smfpimioompt.b | |
|
5 | smfpimioompt.m | |
|
6 | smfpimioompt.l | |
|
7 | smfpimioompt.r | |
|
8 | eqid | |
|
9 | 2 5 8 | smff | |
10 | eqid | |
|
11 | 1 10 4 | dmmptdf | |
12 | 11 | feq2d | |
13 | 9 12 | mpbid | |
14 | 13 | fvmptelcdm | |
15 | 14 | rexrd | |
16 | 1 6 7 15 | pimiooltgt | |
17 | eqid | |
|
18 | 2 3 17 | subsalsal | |
19 | 1 2 4 5 7 | smfpimltxrmpt | |
20 | 1 2 4 5 6 | smfpimgtxrmpt | |
21 | 18 19 20 | salincld | |
22 | 16 21 | eqeltrd | |