Metamath Proof Explorer


Theorem pimiooltgt

Description: The preimage of an open interval is the intersection of the preimage of an unbounded below open interval and an unbounded above open interval. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimiooltgt.1 x φ
pimiooltgt.2 φ L *
pimiooltgt.3 φ R *
pimiooltgt.4 φ x A B *
Assertion pimiooltgt φ x A | B L R = x A | B < R x A | L < B

Proof

Step Hyp Ref Expression
1 pimiooltgt.1 x φ
2 pimiooltgt.2 φ L *
3 pimiooltgt.3 φ R *
4 pimiooltgt.4 φ x A B *
5 2 adantr φ x A L *
6 5 3adant3 φ x A B L R L *
7 3 adantr φ x A R *
8 7 3adant3 φ x A B L R R *
9 simp3 φ x A B L R B L R
10 iooltub L * R * B L R B < R
11 6 8 9 10 syl3anc φ x A B L R B < R
12 11 3exp φ x A B L R B < R
13 1 12 ralrimi φ x A B L R B < R
14 ss2rab x A | B L R x A | B < R x A B L R B < R
15 13 14 sylibr φ x A | B L R x A | B < R
16 ioogtlb L * R * B L R L < B
17 6 8 9 16 syl3anc φ x A B L R L < B
18 17 3exp φ x A B L R L < B
19 1 18 ralrimi φ x A B L R L < B
20 ss2rab x A | B L R x A | L < B x A B L R L < B
21 19 20 sylibr φ x A | B L R x A | L < B
22 15 21 ssind φ x A | B L R x A | B < R x A | L < B
23 elinel1 x x A | B < R x A | L < B x x A | B < R
24 ssrab2 x A | B < R A
25 24 sseli x x A | B < R x A
26 23 25 syl x x A | B < R x A | L < B x A
27 26 adantl φ x x A | B < R x A | L < B x A
28 27 5 syldan φ x x A | B < R x A | L < B L *
29 27 7 syldan φ x x A | B < R x A | L < B R *
30 27 4 syldan φ x x A | B < R x A | L < B B *
31 mnfxr −∞ *
32 31 a1i φ x x A | B < R x A | L < B −∞ *
33 28 mnfled φ x x A | B < R x A | L < B −∞ L
34 elinel2 x x A | B < R x A | L < B x x A | L < B
35 rabidim2 x x A | L < B L < B
36 34 35 syl x x A | B < R x A | L < B L < B
37 36 adantl φ x x A | B < R x A | L < B L < B
38 32 28 30 33 37 xrlelttrd φ x x A | B < R x A | L < B −∞ < B
39 32 30 38 xrltned φ x x A | B < R x A | L < B −∞ B
40 39 necomd φ x x A | B < R x A | L < B B −∞
41 pnfxr +∞ *
42 41 a1i φ x x A | B < R x A | L < B +∞ *
43 rabidim2 x x A | B < R B < R
44 23 43 syl x x A | B < R x A | L < B B < R
45 44 adantl φ x x A | B < R x A | L < B B < R
46 pnfge R * R +∞
47 29 46 syl φ x x A | B < R x A | L < B R +∞
48 30 29 42 45 47 xrltletrd φ x x A | B < R x A | L < B B < +∞
49 30 42 48 xrltned φ x x A | B < R x A | L < B B +∞
50 30 40 49 xrred φ x x A | B < R x A | L < B B
51 28 29 50 37 45 eliood φ x x A | B < R x A | L < B B L R
52 27 51 jca φ x x A | B < R x A | L < B x A B L R
53 rabid x x A | B L R x A B L R
54 52 53 sylibr φ x x A | B < R x A | L < B x x A | B L R
55 54 ex φ x x A | B < R x A | L < B x x A | B L R
56 1 55 ralrimi φ x x A | B < R x A | L < B x x A | B L R
57 nfrab1 _ x x A | B < R
58 nfrab1 _ x x A | L < B
59 57 58 nfin _ x x A | B < R x A | L < B
60 nfrab1 _ x x A | B L R
61 59 60 dfss3f x A | B < R x A | L < B x A | B L R x x A | B < R x A | L < B x x A | B L R
62 56 61 sylibr φ x A | B < R x A | L < B x A | B L R
63 22 62 eqssd φ x A | B L R = x A | B < R x A | L < B