Metamath Proof Explorer


Theorem pimiooltgt

Description: The preimage of an open interval is the intersection of the preimage of an unbounded below open interval and an unbounded above open interval. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimiooltgt.1 x φ
pimiooltgt.2 φ L *
pimiooltgt.3 φ R *
pimiooltgt.4 φ x A B *
Assertion pimiooltgt φ x A | B L R = x A | B < R x A | L < B

Proof

Step Hyp Ref Expression
1 pimiooltgt.1 x φ
2 pimiooltgt.2 φ L *
3 pimiooltgt.3 φ R *
4 pimiooltgt.4 φ x A B *
5 2 3ad2ant1 φ x A B L R L *
6 3 3ad2ant1 φ x A B L R R *
7 simp3 φ x A B L R B L R
8 5 6 7 iooltubd φ x A B L R B < R
9 8 3exp φ x A B L R B < R
10 1 9 ralrimi φ x A B L R B < R
11 10 ss2rabd φ x A | B L R x A | B < R
12 5 6 7 ioogtlbd φ x A B L R L < B
13 12 3exp φ x A B L R L < B
14 1 13 ralrimi φ x A B L R L < B
15 14 ss2rabd φ x A | B L R x A | L < B
16 11 15 ssind φ x A | B L R x A | B < R x A | L < B
17 nfrab1 _ x x A | B < R
18 nfrab1 _ x x A | L < B
19 17 18 nfin _ x x A | B < R x A | L < B
20 nfrab1 _ x x A | B L R
21 elinel1 x x A | B < R x A | L < B x x A | B < R
22 rabidim1 x x A | B < R x A
23 21 22 syl x x A | B < R x A | L < B x A
24 23 adantl φ x x A | B < R x A | L < B x A
25 2 adantr φ x x A | B < R x A | L < B L *
26 3 adantr φ x x A | B < R x A | L < B R *
27 23 4 sylan2 φ x x A | B < R x A | L < B B *
28 mnfxr −∞ *
29 28 a1i φ x x A | B < R x A | L < B −∞ *
30 25 mnfled φ x x A | B < R x A | L < B −∞ L
31 elinel2 x x A | B < R x A | L < B x x A | L < B
32 rabidim2 x x A | L < B L < B
33 31 32 syl x x A | B < R x A | L < B L < B
34 33 adantl φ x x A | B < R x A | L < B L < B
35 29 25 27 30 34 xrlelttrd φ x x A | B < R x A | L < B −∞ < B
36 29 27 35 xrgtned φ x x A | B < R x A | L < B B −∞
37 pnfxr +∞ *
38 37 a1i φ x x A | B < R x A | L < B +∞ *
39 rabidim2 x x A | B < R B < R
40 21 39 syl x x A | B < R x A | L < B B < R
41 40 adantl φ x x A | B < R x A | L < B B < R
42 26 pnfged φ x x A | B < R x A | L < B R +∞
43 27 26 38 41 42 xrltletrd φ x x A | B < R x A | L < B B < +∞
44 27 38 43 xrltned φ x x A | B < R x A | L < B B +∞
45 27 36 44 xrred φ x x A | B < R x A | L < B B
46 25 26 45 34 41 eliood φ x x A | B < R x A | L < B B L R
47 24 46 rabidd φ x x A | B < R x A | L < B x x A | B L R
48 1 19 20 47 ssdf2 φ x A | B < R x A | L < B x A | B L R
49 16 48 eqssd φ x A | B L R = x A | B < R x A | L < B