Metamath Proof Explorer


Theorem smfpimne2

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that A is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfpimne2.p x φ
smfpimne2.x _ x F
smfpimne2.s φ S SAlg
smfpimne2.f φ F SMblFn S
smfpimne2.d D = dom F
Assertion smfpimne2 φ x D | F x A S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfpimne2.p x φ
2 smfpimne2.x _ x F
3 smfpimne2.s φ S SAlg
4 smfpimne2.f φ F SMblFn S
5 smfpimne2.d D = dom F
6 nfv x A *
7 1 6 nfan x φ A *
8 3 adantr φ A * S SAlg
9 4 adantr φ A * F SMblFn S
10 simpr φ A * A *
11 7 2 8 9 5 10 smfpimne φ A * x D | F x A S 𝑡 D
12 2 nfdm _ x dom F
13 5 12 nfcxfr _ x D
14 13 ssrab2f x D | F x A D
15 14 a1i φ ¬ A * x D | F x A D
16 nfv x ¬ A *
17 1 16 nfan x φ ¬ A *
18 ssidd φ ¬ A * D D
19 nne ¬ F x A F x = A
20 simpr φ x D F x = A F x = A
21 3 4 5 smff φ F : D
22 21 ffvelcdmda φ x D F x
23 22 rexrd φ x D F x *
24 23 adantr φ x D F x = A F x *
25 20 24 eqeltrrd φ x D F x = A A *
26 19 25 sylan2b φ x D ¬ F x A A *
27 26 adantllr φ ¬ A * x D ¬ F x A A *
28 simpllr φ ¬ A * x D ¬ F x A ¬ A *
29 27 28 condan φ ¬ A * x D F x A
30 13 13 17 18 29 ssrabdf φ ¬ A * D x D | F x A
31 15 30 eqssd φ ¬ A * x D | F x A = D
32 3 4 5 smfdmss φ D S
33 3 32 subsaluni φ D S 𝑡 D
34 33 adantr φ ¬ A * D S 𝑡 D
35 31 34 eqeltrd φ ¬ A * x D | F x A S 𝑡 D
36 11 35 pm2.61dan φ x D | F x A S 𝑡 D