Metamath Proof Explorer


Theorem smndex2dnrinv

Description: The doubling function D has no right inverse in the monoid of endofunctions on NN0 . (Contributed by AV, 18-Feb-2024)

Ref Expression
Hypotheses smndex2dbas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex2dbas.b B=BaseM
smndex2dbas.0 0˙=0M
smndex2dbas.d D=x02x
Assertion smndex2dnrinv fBDf0˙

Proof

Step Hyp Ref Expression
1 smndex2dbas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex2dbas.b B=BaseM
3 smndex2dbas.0 0˙=0M
4 smndex2dbas.d D=x02x
5 df-ne Df0˙¬Df=0˙
6 5 ralbii fBDf0˙fB¬Df=0˙
7 1 2 efmndbasf fBf:00
8 1nn0 10
9 nn0z x0x
10 0zd x00
11 zneo x02x20+1
12 9 10 11 syl2anc x02x20+1
13 2t0e0 20=0
14 13 oveq1i 20+1=0+1
15 0p1e1 0+1=1
16 14 15 eqtri 20+1=1
17 16 a1i x020+1=1
18 12 17 neeqtrd x02x1
19 18 necomd x012x
20 19 neneqd x0¬1=2x
21 20 nrex ¬x01=2x
22 1ex 1V
23 eqeq1 y=1y=2x1=2x
24 23 rexbidv y=1x0y=2xx01=2x
25 22 24 elab 1y|x0y=2xx01=2x
26 21 25 mtbir ¬1y|x0y=2x
27 nelss 10¬1y|x0y=2x¬0y|x0y=2x
28 8 26 27 mp2an ¬0y|x0y=2x
29 28 intnan ¬y|x0y=2x00y|x0y=2x
30 eqss y|x0y=2x=0y|x0y=2x00y|x0y=2x
31 29 30 mtbir ¬y|x0y=2x=0
32 4 rnmpt ranD=y|x0y=2x
33 32 eqeq1i ranD=0y|x0y=2x=0
34 31 33 mtbir ¬ranD=0
35 34 olci ¬DFn0¬ranD=0
36 ianor ¬DFn0ranD=0¬DFn0¬ranD=0
37 df-fo D:0onto0DFn0ranD=0
38 36 37 xchnxbir ¬D:0onto0¬DFn0¬ranD=0
39 35 38 mpbir ¬D:0onto0
40 39 a1i f:00¬D:0onto0
41 1 2 3 4 smndex2dbas DB
42 1 2 efmndbasf DBD:00
43 simpl D:00f:00Df=0˙D:00
44 simpl f:00Df=0˙f:00
45 44 adantl D:00f:00Df=0˙f:00
46 nn0ex 0V
47 1 efmndid 0VI0=0M
48 46 47 ax-mp I0=0M
49 3 48 eqtr4i 0˙=I0
50 49 eqeq2i Df=0˙Df=I0
51 50 biimpi Df=0˙Df=I0
52 51 adantl f:00Df=0˙Df=I0
53 52 adantl D:00f:00Df=0˙Df=I0
54 fcofo D:00f:00Df=I0D:0onto0
55 43 45 53 54 syl3anc D:00f:00Df=0˙D:0onto0
56 55 ex D:00f:00Df=0˙D:0onto0
57 41 42 56 mp2b f:00Df=0˙D:0onto0
58 40 57 mtand f:00¬Df=0˙
59 7 58 syl fB¬Df=0˙
60 6 59 mprgbir fBDf0˙