Metamath Proof Explorer


Theorem smndex2dnrinv

Description: The doubling function D has no right inverse in the monoid of endofunctions on NN0 . (Contributed by AV, 18-Feb-2024)

Ref Expression
Hypotheses smndex2dbas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex2dbas.b B = Base M
smndex2dbas.0 0 ˙ = 0 M
smndex2dbas.d D = x 0 2 x
Assertion smndex2dnrinv f B D f 0 ˙

Proof

Step Hyp Ref Expression
1 smndex2dbas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex2dbas.b B = Base M
3 smndex2dbas.0 0 ˙ = 0 M
4 smndex2dbas.d D = x 0 2 x
5 df-ne D f 0 ˙ ¬ D f = 0 ˙
6 5 ralbii f B D f 0 ˙ f B ¬ D f = 0 ˙
7 1 2 efmndbasf f B f : 0 0
8 1nn0 1 0
9 nn0z x 0 x
10 0zd x 0 0
11 zneo x 0 2 x 2 0 + 1
12 9 10 11 syl2anc x 0 2 x 2 0 + 1
13 2t0e0 2 0 = 0
14 13 oveq1i 2 0 + 1 = 0 + 1
15 0p1e1 0 + 1 = 1
16 14 15 eqtri 2 0 + 1 = 1
17 16 a1i x 0 2 0 + 1 = 1
18 12 17 neeqtrd x 0 2 x 1
19 18 necomd x 0 1 2 x
20 19 neneqd x 0 ¬ 1 = 2 x
21 20 nrex ¬ x 0 1 = 2 x
22 1ex 1 V
23 eqeq1 y = 1 y = 2 x 1 = 2 x
24 23 rexbidv y = 1 x 0 y = 2 x x 0 1 = 2 x
25 22 24 elab 1 y | x 0 y = 2 x x 0 1 = 2 x
26 21 25 mtbir ¬ 1 y | x 0 y = 2 x
27 nelss 1 0 ¬ 1 y | x 0 y = 2 x ¬ 0 y | x 0 y = 2 x
28 8 26 27 mp2an ¬ 0 y | x 0 y = 2 x
29 28 intnan ¬ y | x 0 y = 2 x 0 0 y | x 0 y = 2 x
30 eqss y | x 0 y = 2 x = 0 y | x 0 y = 2 x 0 0 y | x 0 y = 2 x
31 29 30 mtbir ¬ y | x 0 y = 2 x = 0
32 4 rnmpt ran D = y | x 0 y = 2 x
33 32 eqeq1i ran D = 0 y | x 0 y = 2 x = 0
34 31 33 mtbir ¬ ran D = 0
35 34 olci ¬ D Fn 0 ¬ ran D = 0
36 ianor ¬ D Fn 0 ran D = 0 ¬ D Fn 0 ¬ ran D = 0
37 df-fo D : 0 onto 0 D Fn 0 ran D = 0
38 36 37 xchnxbir ¬ D : 0 onto 0 ¬ D Fn 0 ¬ ran D = 0
39 35 38 mpbir ¬ D : 0 onto 0
40 39 a1i f : 0 0 ¬ D : 0 onto 0
41 1 2 3 4 smndex2dbas D B
42 1 2 efmndbasf D B D : 0 0
43 simpl D : 0 0 f : 0 0 D f = 0 ˙ D : 0 0
44 simpl f : 0 0 D f = 0 ˙ f : 0 0
45 44 adantl D : 0 0 f : 0 0 D f = 0 ˙ f : 0 0
46 nn0ex 0 V
47 1 efmndid 0 V I 0 = 0 M
48 46 47 ax-mp I 0 = 0 M
49 3 48 eqtr4i 0 ˙ = I 0
50 49 eqeq2i D f = 0 ˙ D f = I 0
51 50 biimpi D f = 0 ˙ D f = I 0
52 51 adantl f : 0 0 D f = 0 ˙ D f = I 0
53 52 adantl D : 0 0 f : 0 0 D f = 0 ˙ D f = I 0
54 fcofo D : 0 0 f : 0 0 D f = I 0 D : 0 onto 0
55 43 45 53 54 syl3anc D : 0 0 f : 0 0 D f = 0 ˙ D : 0 onto 0
56 55 ex D : 0 0 f : 0 0 D f = 0 ˙ D : 0 onto 0
57 41 42 56 mp2b f : 0 0 D f = 0 ˙ D : 0 onto 0
58 40 57 mtand f : 0 0 ¬ D f = 0 ˙
59 7 58 syl f B ¬ D f = 0 ˙
60 6 59 mprgbir f B D f 0 ˙