Metamath Proof Explorer


Theorem smogt

Description: A strictly monotone ordinal function is greater than or equal to its argument. Exercise 1 in TakeutiZaring p. 50. (Contributed by Andrew Salmon, 23-Nov-2011) (Revised by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion smogt FFnASmoFCACFC

Proof

Step Hyp Ref Expression
1 id x=Cx=C
2 fveq2 x=CFx=FC
3 1 2 sseq12d x=CxFxCFC
4 3 imbi2d x=CFFnASmoFxFxFFnASmoFCFC
5 smodm2 FFnASmoFOrdA
6 5 3adant3 FFnASmoFxAOrdA
7 simp3 FFnASmoFxAxA
8 ordelord OrdAxAOrdx
9 6 7 8 syl2anc FFnASmoFxAOrdx
10 vex xV
11 10 elon xOnOrdx
12 9 11 sylibr FFnASmoFxAxOn
13 eleq1w x=yxAyA
14 13 3anbi3d x=yFFnASmoFxAFFnASmoFyA
15 id x=yx=y
16 fveq2 x=yFx=Fy
17 15 16 sseq12d x=yxFxyFy
18 14 17 imbi12d x=yFFnASmoFxAxFxFFnASmoFyAyFy
19 simpl1 FFnASmoFxAyxFFnA
20 simpl2 FFnASmoFxAyxSmoF
21 ordtr1 OrdAyxxAyA
22 21 expcomd OrdAxAyxyA
23 6 7 22 sylc FFnASmoFxAyxyA
24 23 imp FFnASmoFxAyxyA
25 pm2.27 FFnASmoFyAFFnASmoFyAyFyyFy
26 19 20 24 25 syl3anc FFnASmoFxAyxFFnASmoFyAyFyyFy
27 26 ralimdva FFnASmoFxAyxFFnASmoFyAyFyyxyFy
28 5 3adant3 FFnASmoFxAyxyFyOrdA
29 simp31 FFnASmoFxAyxyFyxA
30 28 29 8 syl2anc FFnASmoFxAyxyFyOrdx
31 simp32 FFnASmoFxAyxyFyyx
32 ordelord OrdxyxOrdy
33 30 31 32 syl2anc FFnASmoFxAyxyFyOrdy
34 smofvon2 SmoFFxOn
35 34 3ad2ant2 FFnASmoFxAyxyFyFxOn
36 eloni FxOnOrdFx
37 35 36 syl FFnASmoFxAyxyFyOrdFx
38 simp33 FFnASmoFxAyxyFyyFy
39 smoel2 FFnASmoFxAyxFyFx
40 39 3adantr3 FFnASmoFxAyxyFyFyFx
41 40 3impa FFnASmoFxAyxyFyFyFx
42 ordtr2 OrdyOrdFxyFyFyFxyFx
43 42 imp OrdyOrdFxyFyFyFxyFx
44 33 37 38 41 43 syl22anc FFnASmoFxAyxyFyyFx
45 44 3expia FFnASmoFxAyxyFyyFx
46 45 3expd FFnASmoFxAyxyFyyFx
47 46 3impia FFnASmoFxAyxyFyyFx
48 47 imp FFnASmoFxAyxyFyyFx
49 48 ralimdva FFnASmoFxAyxyFyyxyFx
50 dfss3 xFxyxyFx
51 49 50 syl6ibr FFnASmoFxAyxyFyxFx
52 27 51 syldc yxFFnASmoFyAyFyFFnASmoFxAxFx
53 52 a1i xOnyxFFnASmoFyAyFyFFnASmoFxAxFx
54 18 53 tfis2 xOnFFnASmoFxAxFx
55 12 54 mpcom FFnASmoFxAxFx
56 55 3expia FFnASmoFxAxFx
57 56 com12 xAFFnASmoFxFx
58 4 57 vtoclga CAFFnASmoFCFC
59 58 com12 FFnASmoFCACFC
60 59 3impia FFnASmoFCACFC