Description: A strictly monotone ordinal function is greater than or equal to its argument. Exercise 1 in TakeutiZaring p. 50. (Contributed by Andrew Salmon, 23-Nov-2011) (Revised by Mario Carneiro, 28-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | smogt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | fveq2 | |
|
3 | 1 2 | sseq12d | |
4 | 3 | imbi2d | |
5 | smodm2 | |
|
6 | 5 | 3adant3 | |
7 | simp3 | |
|
8 | ordelord | |
|
9 | 6 7 8 | syl2anc | |
10 | vex | |
|
11 | 10 | elon | |
12 | 9 11 | sylibr | |
13 | eleq1w | |
|
14 | 13 | 3anbi3d | |
15 | id | |
|
16 | fveq2 | |
|
17 | 15 16 | sseq12d | |
18 | 14 17 | imbi12d | |
19 | simpl1 | |
|
20 | simpl2 | |
|
21 | ordtr1 | |
|
22 | 21 | expcomd | |
23 | 6 7 22 | sylc | |
24 | 23 | imp | |
25 | pm2.27 | |
|
26 | 19 20 24 25 | syl3anc | |
27 | 26 | ralimdva | |
28 | 5 | 3adant3 | |
29 | simp31 | |
|
30 | 28 29 8 | syl2anc | |
31 | simp32 | |
|
32 | ordelord | |
|
33 | 30 31 32 | syl2anc | |
34 | smofvon2 | |
|
35 | 34 | 3ad2ant2 | |
36 | eloni | |
|
37 | 35 36 | syl | |
38 | simp33 | |
|
39 | smoel2 | |
|
40 | 39 | 3adantr3 | |
41 | 40 | 3impa | |
42 | ordtr2 | |
|
43 | 42 | imp | |
44 | 33 37 38 41 43 | syl22anc | |
45 | 44 | 3expia | |
46 | 45 | 3expd | |
47 | 46 | 3impia | |
48 | 47 | imp | |
49 | 48 | ralimdva | |
50 | dfss3 | |
|
51 | 49 50 | syl6ibr | |
52 | 27 51 | syldc | |
53 | 52 | a1i | |
54 | 18 53 | tfis2 | |
55 | 12 54 | mpcom | |
56 | 55 | 3expia | |
57 | 56 | com12 | |
58 | 4 57 | vtoclga | |
59 | 58 | com12 | |
60 | 59 | 3impia | |