Description: Proof of it0e0 without ax-mulcom . Informally, a real number times 0 is 0, and E. r e. RR r = _i x. s by ax-cnre and renegid2 . (Contributed by SN, 30-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | sn-it0e0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn | |
|
2 | cnre | |
|
3 | oveq2 | |
|
4 | ax-icn | |
|
5 | 4 | a1i | |
6 | recn | |
|
7 | 0cnd | |
|
8 | 5 6 7 | mulassd | |
9 | remul01 | |
|
10 | 9 | oveq2d | |
11 | 8 10 | eqtrd | |
12 | 11 | ad2antlr | |
13 | rernegcl | |
|
14 | 13 | recnd | |
15 | 14 | adantr | |
16 | recn | |
|
17 | 16 | adantr | |
18 | 5 6 | mulcld | |
19 | 18 | adantl | |
20 | 15 17 19 | addassd | |
21 | renegid2 | |
|
22 | 21 | oveq1d | |
23 | sn-addlid | |
|
24 | 18 23 | syl | |
25 | 22 24 | sylan9eq | |
26 | 20 25 | eqtr3d | |
27 | 26 | eqeq2d | |
28 | 27 | biimpa | |
29 | 28 | oveq1d | |
30 | elre0re | |
|
31 | 13 30 | readdcld | |
32 | 31 | ad2antrr | |
33 | remul01 | |
|
34 | 32 33 | syl | |
35 | 29 34 | eqtr3d | |
36 | 12 35 | eqtr3d | |
37 | 36 | ex | |
38 | 3 37 | syl5 | |
39 | 38 | rexlimivv | |
40 | 1 2 39 | mp2b | |