Metamath Proof Explorer


Theorem sqrtcn

Description: Continuity of the square root function. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypothesis sqrcn.d D=−∞0
Assertion sqrtcn D:Dcn

Proof

Step Hyp Ref Expression
1 sqrcn.d D=−∞0
2 sqrtf :
3 2 a1i :
4 3 feqmptd =xx
5 4 reseq1d D=xxD
6 difss −∞0
7 1 6 eqsstri D
8 resmpt DxxD=xDx
9 7 8 mp1i xxD=xDx
10 7 sseli xDx
11 10 adantl xDx
12 cxpsqrt xx12=x
13 11 12 syl xDx12=x
14 13 eqcomd xDx=x12
15 14 mpteq2dva xDx=xDx12
16 5 9 15 3eqtrd D=xDx12
17 eqid TopOpenfld=TopOpenfld
18 17 cnfldtopon TopOpenfldTopOn
19 18 a1i TopOpenfldTopOn
20 resttopon TopOpenfldTopOnDTopOpenfld𝑡DTopOnD
21 19 7 20 sylancl TopOpenfld𝑡DTopOnD
22 21 cnmptid xDxTopOpenfld𝑡DCnTopOpenfld𝑡D
23 ax-1cn 1
24 halfcl 112
25 23 24 mp1i 12
26 21 19 25 cnmptc xD12TopOpenfld𝑡DCnTopOpenfld
27 eqid TopOpenfld𝑡D=TopOpenfld𝑡D
28 1 17 27 cxpcn yD,zyzTopOpenfld𝑡D×tTopOpenfldCnTopOpenfld
29 28 a1i yD,zyzTopOpenfld𝑡D×tTopOpenfldCnTopOpenfld
30 oveq12 y=xz=12yz=x12
31 21 22 26 21 19 29 30 cnmpt12 xDx12TopOpenfld𝑡DCnTopOpenfld
32 ssid
33 18 toponrestid TopOpenfld=TopOpenfld𝑡
34 17 27 33 cncfcn DDcn=TopOpenfld𝑡DCnTopOpenfld
35 7 32 34 mp2an Dcn=TopOpenfld𝑡DCnTopOpenfld
36 31 35 eleqtrrdi xDx12:Dcn
37 16 36 eqeltrd D:Dcn
38 37 mptru D:Dcn