Description: Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sradrng.1 | |
|
sradrng.2 | |
||
Assertion | sradrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sradrng.1 | |
|
2 | sradrng.2 | |
|
3 | drngring | |
|
4 | 1 2 | sraring | |
5 | 3 4 | sylan | |
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 6 7 8 | isdrng | |
10 | 9 | simprbi | |
11 | 10 | adantr | |
12 | eqidd | |
|
13 | 1 | a1i | |
14 | simpr | |
|
15 | 14 2 | sseqtrdi | |
16 | 13 15 | srabase | |
17 | 13 15 | sramulr | |
18 | 17 | oveqdr | |
19 | 12 16 18 | unitpropd | |
20 | eqidd | |
|
21 | 13 20 15 | sralmod0 | |
22 | 21 | sneqd | |
23 | 16 22 | difeq12d | |
24 | 11 19 23 | 3eqtr3d | |
25 | eqid | |
|
26 | eqid | |
|
27 | eqid | |
|
28 | 25 26 27 | isdrng | |
29 | 5 24 28 | sylanbrc | |