Metamath Proof Explorer


Theorem sradrng

Description: Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Hypotheses sraring.1 A = subringAlg R V
sraring.2 B = Base R
Assertion sradrng R DivRing V B A DivRing

Proof

Step Hyp Ref Expression
1 sraring.1 A = subringAlg R V
2 sraring.2 B = Base R
3 drngring R DivRing R Ring
4 1 2 sraring R Ring V B A Ring
5 3 4 sylan R DivRing V B A Ring
6 eqid Base R = Base R
7 eqid Unit R = Unit R
8 eqid 0 R = 0 R
9 6 7 8 isdrng R DivRing R Ring Unit R = Base R 0 R
10 9 simprbi R DivRing Unit R = Base R 0 R
11 10 adantr R DivRing V B Unit R = Base R 0 R
12 eqidd R DivRing V B Base R = Base R
13 1 a1i R DivRing V B A = subringAlg R V
14 simpr R DivRing V B V B
15 14 2 sseqtrdi R DivRing V B V Base R
16 13 15 srabase R DivRing V B Base R = Base A
17 13 15 sramulr R DivRing V B R = A
18 17 oveqdr R DivRing V B x Base R y Base R x R y = x A y
19 12 16 18 unitpropd R DivRing V B Unit R = Unit A
20 eqidd R DivRing V B 0 R = 0 R
21 13 20 15 sralmod0 R DivRing V B 0 R = 0 A
22 21 sneqd R DivRing V B 0 R = 0 A
23 16 22 difeq12d R DivRing V B Base R 0 R = Base A 0 A
24 11 19 23 3eqtr3d R DivRing V B Unit A = Base A 0 A
25 eqid Base A = Base A
26 eqid Unit A = Unit A
27 eqid 0 A = 0 A
28 25 26 27 isdrng A DivRing A Ring Unit A = Base A 0 A
29 5 24 28 sylanbrc R DivRing V B A DivRing