Metamath Proof Explorer


Theorem sradrng

Description: Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Hypotheses sradrng.1 A=subringAlgRV
sradrng.2 B=BaseR
Assertion sradrng RDivRingVBADivRing

Proof

Step Hyp Ref Expression
1 sradrng.1 A=subringAlgRV
2 sradrng.2 B=BaseR
3 drngring RDivRingRRing
4 1 2 sraring RRingVBARing
5 3 4 sylan RDivRingVBARing
6 eqid BaseR=BaseR
7 eqid UnitR=UnitR
8 eqid 0R=0R
9 6 7 8 isdrng RDivRingRRingUnitR=BaseR0R
10 9 simprbi RDivRingUnitR=BaseR0R
11 10 adantr RDivRingVBUnitR=BaseR0R
12 eqidd RDivRingVBBaseR=BaseR
13 1 a1i RDivRingVBA=subringAlgRV
14 simpr RDivRingVBVB
15 14 2 sseqtrdi RDivRingVBVBaseR
16 13 15 srabase RDivRingVBBaseR=BaseA
17 13 15 sramulr RDivRingVBR=A
18 17 oveqdr RDivRingVBxBaseRyBaseRxRy=xAy
19 12 16 18 unitpropd RDivRingVBUnitR=UnitA
20 eqidd RDivRingVB0R=0R
21 13 20 15 sralmod0 RDivRingVB0R=0A
22 21 sneqd RDivRingVB0R=0A
23 16 22 difeq12d RDivRingVBBaseR0R=BaseA0A
24 11 19 23 3eqtr3d RDivRingVBUnitA=BaseA0A
25 eqid BaseA=BaseA
26 eqid UnitA=UnitA
27 eqid 0A=0A
28 25 26 27 isdrng ADivRingARingUnitA=BaseA0A
29 5 24 28 sylanbrc RDivRingVBADivRing