Metamath Proof Explorer


Theorem srg1zr

Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010) (Revised by AV, 25-Jan-2020)

Ref Expression
Hypotheses srg1zr.b B=BaseR
srg1zr.p +˙=+R
srg1zr.t ˙=R
Assertion srg1zr RSRing+˙FnB×B˙FnB×BZBB=Z+˙=ZZZ˙=ZZZ

Proof

Step Hyp Ref Expression
1 srg1zr.b B=BaseR
2 srg1zr.p +˙=+R
3 srg1zr.t ˙=R
4 pm4.24 B=ZB=ZB=Z
5 srgmnd RSRingRMnd
6 5 3ad2ant1 RSRing+˙FnB×B˙FnB×BRMnd
7 6 adantr RSRing+˙FnB×B˙FnB×BZBRMnd
8 mndmgm RMndRMgm
9 7 8 syl RSRing+˙FnB×B˙FnB×BZBRMgm
10 simpr RSRing+˙FnB×B˙FnB×BZBZB
11 simpl2 RSRing+˙FnB×B˙FnB×BZB+˙FnB×B
12 1 2 mgmb1mgm1 RMgmZB+˙FnB×BB=Z+˙=ZZZ
13 9 10 11 12 syl3anc RSRing+˙FnB×B˙FnB×BZBB=Z+˙=ZZZ
14 simpl1 RSRing+˙FnB×B˙FnB×BZBRSRing
15 eqid mulGrpR=mulGrpR
16 15 srgmgp RSRingmulGrpRMnd
17 mndmgm mulGrpRMndmulGrpRMgm
18 14 16 17 3syl RSRing+˙FnB×B˙FnB×BZBmulGrpRMgm
19 15 3 mgpplusg ˙=+mulGrpR
20 19 fneq1i ˙FnB×B+mulGrpRFnB×B
21 20 biimpi ˙FnB×B+mulGrpRFnB×B
22 21 3ad2ant3 RSRing+˙FnB×B˙FnB×B+mulGrpRFnB×B
23 22 adantr RSRing+˙FnB×B˙FnB×BZB+mulGrpRFnB×B
24 15 1 mgpbas B=BasemulGrpR
25 eqid +mulGrpR=+mulGrpR
26 24 25 mgmb1mgm1 mulGrpRMgmZB+mulGrpRFnB×BB=Z+mulGrpR=ZZZ
27 18 10 23 26 syl3anc RSRing+˙FnB×B˙FnB×BZBB=Z+mulGrpR=ZZZ
28 19 eqcomi +mulGrpR=˙
29 28 a1i RSRing+˙FnB×B˙FnB×BZB+mulGrpR=˙
30 29 eqeq1d RSRing+˙FnB×B˙FnB×BZB+mulGrpR=ZZZ˙=ZZZ
31 27 30 bitrd RSRing+˙FnB×B˙FnB×BZBB=Z˙=ZZZ
32 13 31 anbi12d RSRing+˙FnB×B˙FnB×BZBB=ZB=Z+˙=ZZZ˙=ZZZ
33 4 32 bitrid RSRing+˙FnB×B˙FnB×BZBB=Z+˙=ZZZ˙=ZZZ