Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010) (Revised by AV, 25-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srg1zr.b | |
|
srg1zr.p | |
||
srg1zr.t | |
||
Assertion | srg1zr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srg1zr.b | |
|
2 | srg1zr.p | |
|
3 | srg1zr.t | |
|
4 | pm4.24 | |
|
5 | srgmnd | |
|
6 | 5 | 3ad2ant1 | |
7 | 6 | adantr | |
8 | mndmgm | |
|
9 | 7 8 | syl | |
10 | simpr | |
|
11 | simpl2 | |
|
12 | 1 2 | mgmb1mgm1 | |
13 | 9 10 11 12 | syl3anc | |
14 | simpl1 | |
|
15 | eqid | |
|
16 | 15 | srgmgp | |
17 | mndmgm | |
|
18 | 14 16 17 | 3syl | |
19 | 15 3 | mgpplusg | |
20 | 19 | fneq1i | |
21 | 20 | biimpi | |
22 | 21 | 3ad2ant3 | |
23 | 22 | adantr | |
24 | 15 1 | mgpbas | |
25 | eqid | |
|
26 | 24 25 | mgmb1mgm1 | |
27 | 18 10 23 26 | syl3anc | |
28 | 19 | eqcomi | |
29 | 28 | a1i | |
30 | 29 | eqeq1d | |
31 | 27 30 | bitrd | |
32 | 13 31 | anbi12d | |
33 | 4 32 | bitrid | |