Metamath Proof Explorer


Theorem srgfcl

Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by AV, 24-Aug-2021)

Ref Expression
Hypotheses srgfcl.b B=BaseR
srgfcl.t ·˙=R
Assertion srgfcl RSRing·˙FnB×B·˙:B×BB

Proof

Step Hyp Ref Expression
1 srgfcl.b B=BaseR
2 srgfcl.t ·˙=R
3 simpr RSRing·˙FnB×B·˙FnB×B
4 1 2 srgcl RSRingaBbBa·˙bB
5 4 3expb RSRingaBbBa·˙bB
6 5 ralrimivva RSRingaBbBa·˙bB
7 fveq2 c=ab·˙c=·˙ab
8 7 eleq1d c=ab·˙cB·˙abB
9 df-ov a·˙b=·˙ab
10 9 eqcomi ·˙ab=a·˙b
11 10 eleq1i ·˙abBa·˙bB
12 8 11 bitrdi c=ab·˙cBa·˙bB
13 12 ralxp cB×B·˙cBaBbBa·˙bB
14 6 13 sylibr RSRingcB×B·˙cB
15 14 adantr RSRing·˙FnB×BcB×B·˙cB
16 fnfvrnss ·˙FnB×BcB×B·˙cBran·˙B
17 3 15 16 syl2anc RSRing·˙FnB×Bran·˙B
18 df-f ·˙:B×BB·˙FnB×Bran·˙B
19 3 17 18 sylanbrc RSRing·˙FnB×B·˙:B×BB