Metamath Proof Explorer


Theorem srgpcomppsc

Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgpcomp.s S=BaseR
srgpcomp.m ×˙=R
srgpcomp.g G=mulGrpR
srgpcomp.e ×˙=G
srgpcomp.r φRSRing
srgpcomp.a φAS
srgpcomp.b φBS
srgpcomp.k φK0
srgpcomp.c φA×˙B=B×˙A
srgpcompp.n φN0
srgpcomppsc.t ·˙=R
srgpcomppsc.c φC0
Assertion srgpcomppsc φC·˙N×˙A×˙K×˙B×˙A=C·˙N+1×˙A×˙K×˙B

Proof

Step Hyp Ref Expression
1 srgpcomp.s S=BaseR
2 srgpcomp.m ×˙=R
3 srgpcomp.g G=mulGrpR
4 srgpcomp.e ×˙=G
5 srgpcomp.r φRSRing
6 srgpcomp.a φAS
7 srgpcomp.b φBS
8 srgpcomp.k φK0
9 srgpcomp.c φA×˙B=B×˙A
10 srgpcompp.n φN0
11 srgpcomppsc.t ·˙=R
12 srgpcomppsc.c φC0
13 3 1 mgpbas S=BaseG
14 3 srgmgp RSRingGMnd
15 5 14 syl φGMnd
16 13 4 15 10 6 mulgnn0cld φN×˙AS
17 13 4 15 8 7 mulgnn0cld φK×˙BS
18 1 11 2 srgmulgass RSRingC0N×˙ASK×˙BSC·˙N×˙A×˙K×˙B=C·˙N×˙A×˙K×˙B
19 18 eqcomd RSRingC0N×˙ASK×˙BSC·˙N×˙A×˙K×˙B=C·˙N×˙A×˙K×˙B
20 5 12 16 17 19 syl13anc φC·˙N×˙A×˙K×˙B=C·˙N×˙A×˙K×˙B
21 20 oveq1d φC·˙N×˙A×˙K×˙B×˙A=C·˙N×˙A×˙K×˙B×˙A
22 srgmnd RSRingRMnd
23 5 22 syl φRMnd
24 1 11 23 12 16 mulgnn0cld φC·˙N×˙AS
25 1 2 srgass RSRingC·˙N×˙ASK×˙BSASC·˙N×˙A×˙K×˙B×˙A=C·˙N×˙A×˙K×˙B×˙A
26 5 24 17 6 25 syl13anc φC·˙N×˙A×˙K×˙B×˙A=C·˙N×˙A×˙K×˙B×˙A
27 21 26 eqtrd φC·˙N×˙A×˙K×˙B×˙A=C·˙N×˙A×˙K×˙B×˙A
28 1 2 srgcl RSRingK×˙BSASK×˙B×˙AS
29 5 17 6 28 syl3anc φK×˙B×˙AS
30 1 11 2 srgmulgass RSRingC0N×˙ASK×˙B×˙ASC·˙N×˙A×˙K×˙B×˙A=C·˙N×˙A×˙K×˙B×˙A
31 5 12 16 29 30 syl13anc φC·˙N×˙A×˙K×˙B×˙A=C·˙N×˙A×˙K×˙B×˙A
32 1 2 srgass RSRingN×˙ASK×˙BSASN×˙A×˙K×˙B×˙A=N×˙A×˙K×˙B×˙A
33 5 16 17 6 32 syl13anc φN×˙A×˙K×˙B×˙A=N×˙A×˙K×˙B×˙A
34 33 eqcomd φN×˙A×˙K×˙B×˙A=N×˙A×˙K×˙B×˙A
35 34 oveq2d φC·˙N×˙A×˙K×˙B×˙A=C·˙N×˙A×˙K×˙B×˙A
36 31 35 eqtrd φC·˙N×˙A×˙K×˙B×˙A=C·˙N×˙A×˙K×˙B×˙A
37 1 2 3 4 5 6 7 8 9 10 srgpcompp φN×˙A×˙K×˙B×˙A=N+1×˙A×˙K×˙B
38 37 oveq2d φC·˙N×˙A×˙K×˙B×˙A=C·˙N+1×˙A×˙K×˙B
39 27 36 38 3eqtrd φC·˙N×˙A×˙K×˙B×˙A=C·˙N+1×˙A×˙K×˙B