Metamath Proof Explorer


Theorem ssblex

Description: A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion ssblex D∞MetXPXR+S+x+x<RPballDxPballDS

Proof

Step Hyp Ref Expression
1 simprl D∞MetXPXR+S+R+
2 1 rphalfcld D∞MetXPXR+S+R2+
3 simprr D∞MetXPXR+S+S+
4 2 3 ifcld D∞MetXPXR+S+ifR2SR2S+
5 4 rpred D∞MetXPXR+S+ifR2SR2S
6 2 rpred D∞MetXPXR+S+R2
7 1 rpred D∞MetXPXR+S+R
8 3 rpred D∞MetXPXR+S+S
9 min1 R2SifR2SR2SR2
10 6 8 9 syl2anc D∞MetXPXR+S+ifR2SR2SR2
11 1 rpgt0d D∞MetXPXR+S+0<R
12 halfpos R0<RR2<R
13 7 12 syl D∞MetXPXR+S+0<RR2<R
14 11 13 mpbid D∞MetXPXR+S+R2<R
15 5 6 7 10 14 lelttrd D∞MetXPXR+S+ifR2SR2S<R
16 simpl D∞MetXPXR+S+D∞MetXPX
17 4 rpxrd D∞MetXPXR+S+ifR2SR2S*
18 3 rpxrd D∞MetXPXR+S+S*
19 min2 R2SifR2SR2SS
20 6 8 19 syl2anc D∞MetXPXR+S+ifR2SR2SS
21 ssbl D∞MetXPXifR2SR2S*S*ifR2SR2SSPballDifR2SR2SPballDS
22 16 17 18 20 21 syl121anc D∞MetXPXR+S+PballDifR2SR2SPballDS
23 breq1 x=ifR2SR2Sx<RifR2SR2S<R
24 oveq2 x=ifR2SR2SPballDx=PballDifR2SR2S
25 24 sseq1d x=ifR2SR2SPballDxPballDSPballDifR2SR2SPballDS
26 23 25 anbi12d x=ifR2SR2Sx<RPballDxPballDSifR2SR2S<RPballDifR2SR2SPballDS
27 26 rspcev ifR2SR2S+ifR2SR2S<RPballDifR2SR2SPballDSx+x<RPballDxPballDS
28 4 15 22 27 syl12anc D∞MetXPXR+S+x+x<RPballDxPballDS