Metamath Proof Explorer


Theorem sspg

Description: Vector addition on a subspace is a restriction of vector addition on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspg.y Y=BaseSetW
sspg.g G=+vU
sspg.f F=+vW
sspg.h H=SubSpU
Assertion sspg UNrmCVecWHF=GY×Y

Proof

Step Hyp Ref Expression
1 sspg.y Y=BaseSetW
2 sspg.g G=+vU
3 sspg.f F=+vW
4 sspg.h H=SubSpU
5 eqid BaseSetU=BaseSetU
6 5 2 nvgf UNrmCVecG:BaseSetU×BaseSetUBaseSetU
7 6 ffund UNrmCVecFunG
8 7 funresd UNrmCVecFunGY×Y
9 8 adantr UNrmCVecWHFunGY×Y
10 4 sspnv UNrmCVecWHWNrmCVec
11 1 3 nvgf WNrmCVecF:Y×YY
12 10 11 syl UNrmCVecWHF:Y×YY
13 12 ffnd UNrmCVecWHFFnY×Y
14 fnresdm FFnY×YFY×Y=F
15 13 14 syl UNrmCVecWHFY×Y=F
16 eqid 𝑠OLDU=𝑠OLDU
17 eqid 𝑠OLDW=𝑠OLDW
18 eqid normCVU=normCVU
19 eqid normCVW=normCVW
20 2 3 16 17 18 19 4 isssp UNrmCVecWHWNrmCVecFG𝑠OLDW𝑠OLDUnormCVWnormCVU
21 20 simplbda UNrmCVecWHFG𝑠OLDW𝑠OLDUnormCVWnormCVU
22 21 simp1d UNrmCVecWHFG
23 ssres FGFY×YGY×Y
24 22 23 syl UNrmCVecWHFY×YGY×Y
25 15 24 eqsstrrd UNrmCVecWHFGY×Y
26 9 13 25 3jca UNrmCVecWHFunGY×YFFnY×YFGY×Y
27 oprssov FunGY×YFFnY×YFGY×YxYyYxGY×Yy=xFy
28 26 27 sylan UNrmCVecWHxYyYxGY×Yy=xFy
29 28 eqcomd UNrmCVecWHxYyYxFy=xGY×Yy
30 29 ralrimivva UNrmCVecWHxYyYxFy=xGY×Yy
31 eqid Y×Y=Y×Y
32 30 31 jctil UNrmCVecWHY×Y=Y×YxYyYxFy=xGY×Yy
33 6 ffnd UNrmCVecGFnBaseSetU×BaseSetU
34 33 adantr UNrmCVecWHGFnBaseSetU×BaseSetU
35 5 1 4 sspba UNrmCVecWHYBaseSetU
36 xpss12 YBaseSetUYBaseSetUY×YBaseSetU×BaseSetU
37 35 35 36 syl2anc UNrmCVecWHY×YBaseSetU×BaseSetU
38 fnssres GFnBaseSetU×BaseSetUY×YBaseSetU×BaseSetUGY×YFnY×Y
39 34 37 38 syl2anc UNrmCVecWHGY×YFnY×Y
40 eqfnov FFnY×YGY×YFnY×YF=GY×YY×Y=Y×YxYyYxFy=xGY×Yy
41 13 39 40 syl2anc UNrmCVecWHF=GY×YY×Y=Y×YxYyYxFy=xGY×Yy
42 32 41 mpbird UNrmCVecWHF=GY×Y