Metamath Proof Explorer


Theorem stoweidlem32

Description: If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem32.1 tφ
stoweidlem32.2 P=tTYi=1MGit
stoweidlem32.3 F=tTi=1MGit
stoweidlem32.4 H=tTY
stoweidlem32.5 φM
stoweidlem32.6 φY
stoweidlem32.7 φG:1MA
stoweidlem32.8 φfAgAtTft+gtA
stoweidlem32.9 φfAgAtTftgtA
stoweidlem32.10 φxtTxA
stoweidlem32.11 φfAf:T
Assertion stoweidlem32 φPA

Proof

Step Hyp Ref Expression
1 stoweidlem32.1 tφ
2 stoweidlem32.2 P=tTYi=1MGit
3 stoweidlem32.3 F=tTi=1MGit
4 stoweidlem32.4 H=tTY
5 stoweidlem32.5 φM
6 stoweidlem32.6 φY
7 stoweidlem32.7 φG:1MA
8 stoweidlem32.8 φfAgAtTft+gtA
9 stoweidlem32.9 φfAgAtTftgtA
10 stoweidlem32.10 φxtTxA
11 stoweidlem32.11 φfAf:T
12 fveq2 t=sGit=Gis
13 12 sumeq2sdv t=si=1MGit=i=1MGis
14 13 cbvmptv tTi=1MGit=sTi=1MGis
15 3 14 eqtri F=sTi=1MGis
16 fveq2 s=tGis=Git
17 16 sumeq2sdv s=ti=1MGis=i=1MGit
18 simpr φtTtT
19 fzfid φtT1MFin
20 simpl φi1Mφ
21 7 ffvelcdmda φi1MGiA
22 eleq1 f=GifAGiA
23 22 anbi2d f=GiφfAφGiA
24 feq1 f=Gif:TGi:T
25 23 24 imbi12d f=GiφfAf:TφGiAGi:T
26 25 11 vtoclg GiAφGiAGi:T
27 21 26 syl φi1MφGiAGi:T
28 20 21 27 mp2and φi1MGi:T
29 28 adantlr φtTi1MGi:T
30 simplr φtTi1MtT
31 29 30 ffvelcdmd φtTi1MGit
32 19 31 fsumrecl φtTi=1MGit
33 15 17 18 32 fvmptd3 φtTFt=i=1MGit
34 33 32 eqeltrd φtTFt
35 34 recnd φtTFt
36 eqidd s=tY=Y
37 36 cbvmptv sTY=tTY
38 4 37 eqtr4i H=sTY
39 6 adantr φtTY
40 38 36 18 39 fvmptd3 φtTHt=Y
41 40 39 eqeltrd φtTHt
42 41 recnd φtTHt
43 35 42 mulcomd φtTFtHt=HtFt
44 40 33 oveq12d φtTHtFt=Yi=1MGit
45 43 44 eqtr2d φtTYi=1MGit=FtHt
46 1 45 mpteq2da φtTYi=1MGit=tTFtHt
47 2 46 eqtrid φP=tTFtHt
48 1 3 5 7 8 11 stoweidlem20 φFA
49 10 stoweidlem4 φYtTYA
50 6 49 mpdan φtTYA
51 4 50 eqeltrid φHA
52 nfmpt1 _ttTi=1MGit
53 3 52 nfcxfr _tF
54 53 nfeq2 tf=F
55 nfmpt1 _ttTY
56 4 55 nfcxfr _tH
57 56 nfeq2 tg=H
58 54 57 9 stoweidlem6 φFAHAtTFtHtA
59 48 51 58 mpd3an23 φtTFtHtA
60 47 59 eqeltrd φPA