Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem40.1 |
|
2 |
|
stoweidlem40.2 |
|
3 |
|
stoweidlem40.3 |
|
4 |
|
stoweidlem40.4 |
|
5 |
|
stoweidlem40.5 |
|
6 |
|
stoweidlem40.6 |
|
7 |
|
stoweidlem40.7 |
|
8 |
|
stoweidlem40.8 |
|
9 |
|
stoweidlem40.9 |
|
10 |
|
stoweidlem40.10 |
|
11 |
|
stoweidlem40.11 |
|
12 |
|
stoweidlem40.12 |
|
13 |
|
stoweidlem40.13 |
|
14 |
|
stoweidlem40.14 |
|
15 |
|
simpr |
|
16 |
|
1red |
|
17 |
8
|
ffvelrnda |
|
18 |
13
|
nnnn0d |
|
19 |
18
|
adantr |
|
20 |
17 19
|
reexpcld |
|
21 |
16 20
|
resubcld |
|
22 |
4
|
fvmpt2 |
|
23 |
15 21 22
|
syl2anc |
|
24 |
23
|
eqcomd |
|
25 |
24
|
oveq1d |
|
26 |
2 25
|
mpteq2da |
|
27 |
3 26
|
eqtrid |
|
28 |
|
nfmpt1 |
|
29 |
4 28
|
nfcxfr |
|
30 |
|
1re |
|
31 |
5
|
fvmpt2 |
|
32 |
30 31
|
mpan2 |
|
33 |
32
|
eqcomd |
|
34 |
33
|
adantl |
|
35 |
6
|
fvmpt2 |
|
36 |
15 20 35
|
syl2anc |
|
37 |
36
|
eqcomd |
|
38 |
34 37
|
oveq12d |
|
39 |
2 38
|
mpteq2da |
|
40 |
4 39
|
eqtrid |
|
41 |
12
|
stoweidlem4 |
|
42 |
30 41
|
mpan2 |
|
43 |
5 42
|
eqeltrid |
|
44 |
1 2 9 11 12 7 18
|
stoweidlem19 |
|
45 |
6 44
|
eqeltrid |
|
46 |
|
nfmpt1 |
|
47 |
5 46
|
nfcxfr |
|
48 |
|
nfmpt1 |
|
49 |
6 48
|
nfcxfr |
|
50 |
47 49 2 9 10 11 12
|
stoweidlem33 |
|
51 |
43 45 50
|
mpd3an23 |
|
52 |
40 51
|
eqeltrd |
|
53 |
14
|
nnnn0d |
|
54 |
29 2 9 11 12 52 53
|
stoweidlem19 |
|
55 |
27 54
|
eqeltrd |
|