| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgdisj.p |  | 
						
							| 2 |  | subgdisj.o |  | 
						
							| 3 |  | subgdisj.z |  | 
						
							| 4 |  | subgdisj.t |  | 
						
							| 5 |  | subgdisj.u |  | 
						
							| 6 |  | subgdisj.i |  | 
						
							| 7 |  | subgdisj.s |  | 
						
							| 8 |  | subgdisj.a |  | 
						
							| 9 |  | subgdisj.c |  | 
						
							| 10 |  | subgdisj.b |  | 
						
							| 11 |  | subgdisj.d |  | 
						
							| 12 |  | subgdisj.j |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 13 | subgsubcl |  | 
						
							| 15 | 4 8 9 14 | syl3anc |  | 
						
							| 16 | 7 9 | sseldd |  | 
						
							| 17 | 1 3 | cntzi |  | 
						
							| 18 | 16 10 17 | syl2anc |  | 
						
							| 19 | 12 18 | oveq12d |  | 
						
							| 20 |  | subgrcl |  | 
						
							| 21 | 4 20 | syl |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 22 | subgss |  | 
						
							| 24 | 4 23 | syl |  | 
						
							| 25 | 24 8 | sseldd |  | 
						
							| 26 | 22 | subgss |  | 
						
							| 27 | 5 26 | syl |  | 
						
							| 28 | 27 10 | sseldd |  | 
						
							| 29 | 22 1 | grpcl |  | 
						
							| 30 | 21 25 28 29 | syl3anc |  | 
						
							| 31 | 24 9 | sseldd |  | 
						
							| 32 | 22 1 13 | grpsubsub4 |  | 
						
							| 33 | 21 30 28 31 32 | syl13anc |  | 
						
							| 34 | 12 30 | eqeltrrd |  | 
						
							| 35 | 22 1 13 | grpsubsub4 |  | 
						
							| 36 | 21 34 31 28 35 | syl13anc |  | 
						
							| 37 | 19 33 36 | 3eqtr4d |  | 
						
							| 38 | 22 1 13 | grppncan |  | 
						
							| 39 | 21 25 28 38 | syl3anc |  | 
						
							| 40 | 39 | oveq1d |  | 
						
							| 41 | 1 3 | cntzi |  | 
						
							| 42 | 16 11 41 | syl2anc |  | 
						
							| 43 | 42 | oveq1d |  | 
						
							| 44 | 27 11 | sseldd |  | 
						
							| 45 | 22 1 13 | grppncan |  | 
						
							| 46 | 21 44 31 45 | syl3anc |  | 
						
							| 47 | 43 46 | eqtrd |  | 
						
							| 48 | 47 | oveq1d |  | 
						
							| 49 | 37 40 48 | 3eqtr3d |  | 
						
							| 50 | 13 | subgsubcl |  | 
						
							| 51 | 5 11 10 50 | syl3anc |  | 
						
							| 52 | 49 51 | eqeltrd |  | 
						
							| 53 | 15 52 | elind |  | 
						
							| 54 | 53 6 | eleqtrd |  | 
						
							| 55 |  | elsni |  | 
						
							| 56 | 54 55 | syl |  | 
						
							| 57 | 22 2 13 | grpsubeq0 |  | 
						
							| 58 | 21 25 31 57 | syl3anc |  | 
						
							| 59 | 56 58 | mpbid |  |