| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intssuni |
|
| 2 |
1
|
adantl |
|
| 3 |
|
ssel2 |
|
| 4 |
3
|
adantlr |
|
| 5 |
|
eqid |
|
| 6 |
5
|
subgss |
|
| 7 |
4 6
|
syl |
|
| 8 |
7
|
ralrimiva |
|
| 9 |
|
unissb |
|
| 10 |
8 9
|
sylibr |
|
| 11 |
2 10
|
sstrd |
|
| 12 |
|
eqid |
|
| 13 |
12
|
subg0cl |
|
| 14 |
4 13
|
syl |
|
| 15 |
14
|
ralrimiva |
|
| 16 |
|
fvex |
|
| 17 |
16
|
elint2 |
|
| 18 |
15 17
|
sylibr |
|
| 19 |
18
|
ne0d |
|
| 20 |
4
|
adantlr |
|
| 21 |
|
simprl |
|
| 22 |
|
elinti |
|
| 23 |
22
|
imp |
|
| 24 |
21 23
|
sylan |
|
| 25 |
|
simprr |
|
| 26 |
|
elinti |
|
| 27 |
26
|
imp |
|
| 28 |
25 27
|
sylan |
|
| 29 |
|
eqid |
|
| 30 |
29
|
subgcl |
|
| 31 |
20 24 28 30
|
syl3anc |
|
| 32 |
31
|
ralrimiva |
|
| 33 |
|
ovex |
|
| 34 |
33
|
elint2 |
|
| 35 |
32 34
|
sylibr |
|
| 36 |
35
|
anassrs |
|
| 37 |
36
|
ralrimiva |
|
| 38 |
4
|
adantlr |
|
| 39 |
23
|
adantll |
|
| 40 |
|
eqid |
|
| 41 |
40
|
subginvcl |
|
| 42 |
38 39 41
|
syl2anc |
|
| 43 |
42
|
ralrimiva |
|
| 44 |
|
fvex |
|
| 45 |
44
|
elint2 |
|
| 46 |
43 45
|
sylibr |
|
| 47 |
37 46
|
jca |
|
| 48 |
47
|
ralrimiva |
|
| 49 |
|
ssn0 |
|
| 50 |
|
n0 |
|
| 51 |
|
subgrcl |
|
| 52 |
51
|
exlimiv |
|
| 53 |
50 52
|
sylbi |
|
| 54 |
5 29 40
|
issubg2 |
|
| 55 |
49 53 54
|
3syl |
|
| 56 |
11 19 48 55
|
mpbir3and |
|