Description: The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | subgint | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intssuni | |
|
2 | 1 | adantl | |
3 | ssel2 | |
|
4 | 3 | adantlr | |
5 | eqid | |
|
6 | 5 | subgss | |
7 | 4 6 | syl | |
8 | 7 | ralrimiva | |
9 | unissb | |
|
10 | 8 9 | sylibr | |
11 | 2 10 | sstrd | |
12 | eqid | |
|
13 | 12 | subg0cl | |
14 | 4 13 | syl | |
15 | 14 | ralrimiva | |
16 | fvex | |
|
17 | 16 | elint2 | |
18 | 15 17 | sylibr | |
19 | 18 | ne0d | |
20 | 4 | adantlr | |
21 | simprl | |
|
22 | elinti | |
|
23 | 22 | imp | |
24 | 21 23 | sylan | |
25 | simprr | |
|
26 | elinti | |
|
27 | 26 | imp | |
28 | 25 27 | sylan | |
29 | eqid | |
|
30 | 29 | subgcl | |
31 | 20 24 28 30 | syl3anc | |
32 | 31 | ralrimiva | |
33 | ovex | |
|
34 | 33 | elint2 | |
35 | 32 34 | sylibr | |
36 | 35 | anassrs | |
37 | 36 | ralrimiva | |
38 | 4 | adantlr | |
39 | 23 | adantll | |
40 | eqid | |
|
41 | 40 | subginvcl | |
42 | 38 39 41 | syl2anc | |
43 | 42 | ralrimiva | |
44 | fvex | |
|
45 | 44 | elint2 | |
46 | 43 45 | sylibr | |
47 | 37 46 | jca | |
48 | 47 | ralrimiva | |
49 | ssn0 | |
|
50 | n0 | |
|
51 | subgrcl | |
|
52 | 51 | exlimiv | |
53 | 50 52 | sylbi | |
54 | 5 29 40 | issubg2 | |
55 | 49 53 54 | 3syl | |
56 | 11 19 48 55 | mpbir3and | |