Metamath Proof Explorer


Theorem subgint

Description: The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Assertion subgint SSubGrpGSSSubGrpG

Proof

Step Hyp Ref Expression
1 intssuni SSS
2 1 adantl SSubGrpGSSS
3 ssel2 SSubGrpGgSgSubGrpG
4 3 adantlr SSubGrpGSgSgSubGrpG
5 eqid BaseG=BaseG
6 5 subgss gSubGrpGgBaseG
7 4 6 syl SSubGrpGSgSgBaseG
8 7 ralrimiva SSubGrpGSgSgBaseG
9 unissb SBaseGgSgBaseG
10 8 9 sylibr SSubGrpGSSBaseG
11 2 10 sstrd SSubGrpGSSBaseG
12 eqid 0G=0G
13 12 subg0cl gSubGrpG0Gg
14 4 13 syl SSubGrpGSgS0Gg
15 14 ralrimiva SSubGrpGSgS0Gg
16 fvex 0GV
17 16 elint2 0GSgS0Gg
18 15 17 sylibr SSubGrpGS0GS
19 18 ne0d SSubGrpGSS
20 4 adantlr SSubGrpGSxSySgSgSubGrpG
21 simprl SSubGrpGSxSySxS
22 elinti xSgSxg
23 22 imp xSgSxg
24 21 23 sylan SSubGrpGSxSySgSxg
25 simprr SSubGrpGSxSySyS
26 elinti ySgSyg
27 26 imp ySgSyg
28 25 27 sylan SSubGrpGSxSySgSyg
29 eqid +G=+G
30 29 subgcl gSubGrpGxgygx+Gyg
31 20 24 28 30 syl3anc SSubGrpGSxSySgSx+Gyg
32 31 ralrimiva SSubGrpGSxSySgSx+Gyg
33 ovex x+GyV
34 33 elint2 x+GySgSx+Gyg
35 32 34 sylibr SSubGrpGSxSySx+GyS
36 35 anassrs SSubGrpGSxSySx+GyS
37 36 ralrimiva SSubGrpGSxSySx+GyS
38 4 adantlr SSubGrpGSxSgSgSubGrpG
39 23 adantll SSubGrpGSxSgSxg
40 eqid invgG=invgG
41 40 subginvcl gSubGrpGxginvgGxg
42 38 39 41 syl2anc SSubGrpGSxSgSinvgGxg
43 42 ralrimiva SSubGrpGSxSgSinvgGxg
44 fvex invgGxV
45 44 elint2 invgGxSgSinvgGxg
46 43 45 sylibr SSubGrpGSxSinvgGxS
47 37 46 jca SSubGrpGSxSySx+GySinvgGxS
48 47 ralrimiva SSubGrpGSxSySx+GySinvgGxS
49 ssn0 SSubGrpGSSubGrpG
50 n0 SubGrpGggSubGrpG
51 subgrcl gSubGrpGGGrp
52 51 exlimiv ggSubGrpGGGrp
53 50 52 sylbi SubGrpGGGrp
54 5 29 40 issubg2 GGrpSSubGrpGSBaseGSxSySx+GySinvgGxS
55 49 53 54 3syl SSubGrpGSSSubGrpGSBaseGSxSySx+GySinvgGxS
56 11 19 48 55 mpbir3and SSubGrpGSSSubGrpG