Metamath Proof Explorer


Theorem sumrblem

Description: Lemma for sumrb . (Contributed by Mario Carneiro, 12-Aug-2013)

Ref Expression
Hypotheses summo.1 F=kifkAB0
summo.2 φkAB
sumrb.3 φNM
Assertion sumrblem φANseqM+FN=seqN+F

Proof

Step Hyp Ref Expression
1 summo.1 F=kifkAB0
2 summo.2 φkAB
3 sumrb.3 φNM
4 addlid n0+n=n
5 4 adantl φANn0+n=n
6 0cnd φAN0
7 3 adantr φANNM
8 iftrue kAifkAB0=B
9 8 adantl φkAifkAB0=B
10 9 2 eqeltrd φkAifkAB0
11 10 ex φkAifkAB0
12 iffalse ¬kAifkAB0=0
13 0cn 0
14 12 13 eqeltrdi ¬kAifkAB0
15 11 14 pm2.61d1 φifkAB0
16 15 adantr φkifkAB0
17 16 1 fmptd φF:
18 17 adantr φANF:
19 eluzelz NMN
20 3 19 syl φN
21 20 adantr φANN
22 18 21 ffvelcdmd φANFN
23 elfzelz nMN1n
24 23 adantl φANnMN1n
25 simplr φANnMN1AN
26 20 zcnd φN
27 26 ad2antrr φANnMN1N
28 ax-1cn 1
29 npcan N1N-1+1=N
30 27 28 29 sylancl φANnMN1N-1+1=N
31 30 fveq2d φANnMN1N-1+1=N
32 25 31 sseqtrrd φANnMN1AN-1+1
33 fznuz nMN1¬nN-1+1
34 33 adantl φANnMN1¬nN-1+1
35 32 34 ssneldd φANnMN1¬nA
36 24 35 eldifd φANnMN1nA
37 fveqeq2 k=nFk=0Fn=0
38 eldifi kAk
39 eldifn kA¬kA
40 39 12 syl kAifkAB0=0
41 40 13 eqeltrdi kAifkAB0
42 1 fvmpt2 kifkAB0Fk=ifkAB0
43 38 41 42 syl2anc kAFk=ifkAB0
44 43 40 eqtrd kAFk=0
45 37 44 vtoclga nAFn=0
46 36 45 syl φANnMN1Fn=0
47 5 6 7 22 46 seqid φANseqM+FN=seqN+F