Description: Lemma for sumrb . (Contributed by Mario Carneiro, 12-Aug-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | summo.1 | |
|
summo.2 | |
||
sumrb.3 | |
||
Assertion | sumrblem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | summo.1 | |
|
2 | summo.2 | |
|
3 | sumrb.3 | |
|
4 | addlid | |
|
5 | 4 | adantl | |
6 | 0cnd | |
|
7 | 3 | adantr | |
8 | iftrue | |
|
9 | 8 | adantl | |
10 | 9 2 | eqeltrd | |
11 | 10 | ex | |
12 | iffalse | |
|
13 | 0cn | |
|
14 | 12 13 | eqeltrdi | |
15 | 11 14 | pm2.61d1 | |
16 | 15 | adantr | |
17 | 16 1 | fmptd | |
18 | 17 | adantr | |
19 | eluzelz | |
|
20 | 3 19 | syl | |
21 | 20 | adantr | |
22 | 18 21 | ffvelcdmd | |
23 | elfzelz | |
|
24 | 23 | adantl | |
25 | simplr | |
|
26 | 20 | zcnd | |
27 | 26 | ad2antrr | |
28 | ax-1cn | |
|
29 | npcan | |
|
30 | 27 28 29 | sylancl | |
31 | 30 | fveq2d | |
32 | 25 31 | sseqtrrd | |
33 | fznuz | |
|
34 | 33 | adantl | |
35 | 32 34 | ssneldd | |
36 | 24 35 | eldifd | |
37 | fveqeq2 | |
|
38 | eldifi | |
|
39 | eldifn | |
|
40 | 39 12 | syl | |
41 | 40 13 | eqeltrdi | |
42 | 1 | fvmpt2 | |
43 | 38 41 42 | syl2anc | |
44 | 43 40 | eqtrd | |
45 | 37 44 | vtoclga | |
46 | 36 45 | syl | |
47 | 5 6 7 22 46 | seqid | |