Description: The support of the composition of two functions is a subset of the support of the inner function if the outer function preserves zero. Compare suppssfv , which has a sethood condition on A instead of B . (Contributed by SN, 25-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suppcoss.f | |
|
suppcoss.g | |
||
suppcoss.b | |
||
suppcoss.y | |
||
suppcoss.1 | |
||
Assertion | suppcoss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppcoss.f | |
|
2 | suppcoss.g | |
|
3 | suppcoss.b | |
|
4 | suppcoss.y | |
|
5 | suppcoss.1 | |
|
6 | dffn3 | |
|
7 | 1 6 | sylib | |
8 | 7 2 | fcod | |
9 | eldif | |
|
10 | 2 | ffnd | |
11 | elsuppfn | |
|
12 | 10 3 4 11 | syl3anc | |
13 | 12 | notbid | |
14 | 13 | anbi2d | |
15 | annotanannot | |
|
16 | 14 15 | bitrdi | |
17 | 9 16 | bitrid | |
18 | nne | |
|
19 | 18 | anbi2i | |
20 | 2 | adantr | |
21 | simprl | |
|
22 | 20 21 | fvco3d | |
23 | simprr | |
|
24 | 23 | fveq2d | |
25 | 5 | adantr | |
26 | 22 24 25 | 3eqtrd | |
27 | 26 | ex | |
28 | 19 27 | biimtrid | |
29 | 17 28 | sylbid | |
30 | 29 | imp | |
31 | 8 30 | suppss | |