Metamath Proof Explorer


Theorem suppcoss

Description: The support of the composition of two functions is a subset of the support of the inner function if the outer function preserves zero. Compare suppssfv , which has a sethood condition on A instead of B . (Contributed by SN, 25-May-2024)

Ref Expression
Hypotheses suppcoss.f φFFnA
suppcoss.g φG:BA
suppcoss.b φBW
suppcoss.y φYV
suppcoss.1 φFY=Z
Assertion suppcoss φFGsuppZGsuppY

Proof

Step Hyp Ref Expression
1 suppcoss.f φFFnA
2 suppcoss.g φG:BA
3 suppcoss.b φBW
4 suppcoss.y φYV
5 suppcoss.1 φFY=Z
6 dffn3 FFnAF:AranF
7 1 6 sylib φF:AranF
8 7 2 fcod φFG:BranF
9 eldif kBsuppYGkB¬ksuppYG
10 2 ffnd φGFnB
11 elsuppfn GFnBBWYVksuppYGkBGkY
12 10 3 4 11 syl3anc φksuppYGkBGkY
13 12 notbid φ¬ksuppYG¬kBGkY
14 13 anbi2d φkB¬ksuppYGkB¬kBGkY
15 annotanannot kB¬kBGkYkB¬GkY
16 14 15 bitrdi φkB¬ksuppYGkB¬GkY
17 9 16 bitrid φkBsuppYGkB¬GkY
18 nne ¬GkYGk=Y
19 18 anbi2i kB¬GkYkBGk=Y
20 2 adantr φkBGk=YG:BA
21 simprl φkBGk=YkB
22 20 21 fvco3d φkBGk=YFGk=FGk
23 simprr φkBGk=YGk=Y
24 23 fveq2d φkBGk=YFGk=FY
25 5 adantr φkBGk=YFY=Z
26 22 24 25 3eqtrd φkBGk=YFGk=Z
27 26 ex φkBGk=YFGk=Z
28 19 27 biimtrid φkB¬GkYFGk=Z
29 17 28 sylbid φkBsuppYGFGk=Z
30 29 imp φkBsuppYGFGk=Z
31 8 30 suppss φFGsuppZGsuppY