Description: The supremum of a pair. (Contributed by NM, 17-Jun-2007) (Proof shortened by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | suppr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | ifcl | |
|
3 | 2 | 3adant1 | |
4 | ifpr | |
|
5 | 4 | 3adant1 | |
6 | breq1 | |
|
7 | 6 | notbid | |
8 | breq1 | |
|
9 | 8 | notbid | |
10 | sonr | |
|
11 | 10 | 3adant3 | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | 7 9 12 13 | ifbothda | |
15 | breq1 | |
|
16 | 15 | notbid | |
17 | breq1 | |
|
18 | 17 | notbid | |
19 | so2nr | |
|
20 | 19 | 3impb | |
21 | 20 | 3com23 | |
22 | imnan | |
|
23 | 21 22 | sylibr | |
24 | 23 | imp | |
25 | sonr | |
|
26 | 25 | 3adant2 | |
27 | 26 | adantr | |
28 | 16 18 24 27 | ifbothda | |
29 | breq2 | |
|
30 | 29 | notbid | |
31 | breq2 | |
|
32 | 31 | notbid | |
33 | 30 32 | ralprg | |
34 | 33 | 3adant1 | |
35 | 14 28 34 | mpbir2and | |
36 | 35 | r19.21bi | |
37 | 1 3 5 36 | supmax | |