Metamath Proof Explorer


Theorem suppr

Description: The supremum of a pair. (Contributed by NM, 17-Jun-2007) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion suppr ROrABACAsupBCAR=ifCRBBC

Proof

Step Hyp Ref Expression
1 simp1 ROrABACAROrA
2 ifcl BACAifCRBBCA
3 2 3adant1 ROrABACAifCRBBCA
4 ifpr BACAifCRBBCBC
5 4 3adant1 ROrABACAifCRBBCBC
6 breq1 B=ifCRBBCBRBifCRBBCRB
7 6 notbid B=ifCRBBC¬BRB¬ifCRBBCRB
8 breq1 C=ifCRBBCCRBifCRBBCRB
9 8 notbid C=ifCRBBC¬CRB¬ifCRBBCRB
10 sonr ROrABA¬BRB
11 10 3adant3 ROrABACA¬BRB
12 11 adantr ROrABACACRB¬BRB
13 simpr ROrABACA¬CRB¬CRB
14 7 9 12 13 ifbothda ROrABACA¬ifCRBBCRB
15 breq1 B=ifCRBBCBRCifCRBBCRC
16 15 notbid B=ifCRBBC¬BRC¬ifCRBBCRC
17 breq1 C=ifCRBBCCRCifCRBBCRC
18 17 notbid C=ifCRBBC¬CRC¬ifCRBBCRC
19 so2nr ROrACABA¬CRBBRC
20 19 3impb ROrACABA¬CRBBRC
21 20 3com23 ROrABACA¬CRBBRC
22 imnan CRB¬BRC¬CRBBRC
23 21 22 sylibr ROrABACACRB¬BRC
24 23 imp ROrABACACRB¬BRC
25 sonr ROrACA¬CRC
26 25 3adant2 ROrABACA¬CRC
27 26 adantr ROrABACA¬CRB¬CRC
28 16 18 24 27 ifbothda ROrABACA¬ifCRBBCRC
29 breq2 y=BifCRBBCRyifCRBBCRB
30 29 notbid y=B¬ifCRBBCRy¬ifCRBBCRB
31 breq2 y=CifCRBBCRyifCRBBCRC
32 31 notbid y=C¬ifCRBBCRy¬ifCRBBCRC
33 30 32 ralprg BACAyBC¬ifCRBBCRy¬ifCRBBCRB¬ifCRBBCRC
34 33 3adant1 ROrABACAyBC¬ifCRBBCRy¬ifCRBBCRB¬ifCRBBCRC
35 14 28 34 mpbir2and ROrABACAyBC¬ifCRBBCRy
36 35 r19.21bi ROrABACAyBC¬ifCRBBCRy
37 1 3 5 36 supmax ROrABACAsupBCAR=ifCRBBC