Description: The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | suppsnop.f | |
|
Assertion | suppsnop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppsnop.f | |
|
2 | f1osng | |
|
3 | f1of | |
|
4 | 2 3 | syl | |
5 | 4 | 3adant3 | |
6 | 1 | feq1i | |
7 | 5 6 | sylibr | |
8 | snex | |
|
9 | fex | |
|
10 | 7 8 9 | sylancl | |
11 | simp3 | |
|
12 | suppval | |
|
13 | 10 11 12 | syl2anc | |
14 | 7 | fdmd | |
15 | 14 | rabeqdv | |
16 | sneq | |
|
17 | 16 | imaeq2d | |
18 | 17 | neeq1d | |
19 | 18 | rabsnif | |
20 | 15 19 | eqtrdi | |
21 | 7 | ffnd | |
22 | snidg | |
|
23 | 22 | 3ad2ant1 | |
24 | fnsnfv | |
|
25 | 24 | eqcomd | |
26 | 21 23 25 | syl2anc | |
27 | 26 | neeq1d | |
28 | 1 | fveq1i | |
29 | fvsng | |
|
30 | 29 | 3adant3 | |
31 | 28 30 | eqtrid | |
32 | 31 | sneqd | |
33 | 32 | neeq1d | |
34 | sneqbg | |
|
35 | 34 | 3ad2ant2 | |
36 | 35 | necon3abid | |
37 | 27 33 36 | 3bitrd | |
38 | 37 | ifbid | |
39 | ifnot | |
|
40 | 38 39 | eqtrdi | |
41 | 13 20 40 | 3eqtrd | |