Metamath Proof Explorer


Theorem suppsnop

Description: The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019)

Ref Expression
Hypothesis suppsnop.f F=XY
Assertion suppsnop XVYWZUFsuppZ=ifY=ZX

Proof

Step Hyp Ref Expression
1 suppsnop.f F=XY
2 f1osng XVYWXY:X1-1 ontoY
3 f1of XY:X1-1 ontoYXY:XY
4 2 3 syl XVYWXY:XY
5 4 3adant3 XVYWZUXY:XY
6 1 feq1i F:XYXY:XY
7 5 6 sylibr XVYWZUF:XY
8 snex XV
9 fex F:XYXVFV
10 7 8 9 sylancl XVYWZUFV
11 simp3 XVYWZUZU
12 suppval FVZUFsuppZ=xdomF|FxZ
13 10 11 12 syl2anc XVYWZUFsuppZ=xdomF|FxZ
14 7 fdmd XVYWZUdomF=X
15 14 rabeqdv XVYWZUxdomF|FxZ=xX|FxZ
16 sneq x=Xx=X
17 16 imaeq2d x=XFx=FX
18 17 neeq1d x=XFxZFXZ
19 18 rabsnif xX|FxZ=ifFXZX
20 15 19 eqtrdi XVYWZUxdomF|FxZ=ifFXZX
21 7 ffnd XVYWZUFFnX
22 snidg XVXX
23 22 3ad2ant1 XVYWZUXX
24 fnsnfv FFnXXXFX=FX
25 24 eqcomd FFnXXXFX=FX
26 21 23 25 syl2anc XVYWZUFX=FX
27 26 neeq1d XVYWZUFXZFXZ
28 1 fveq1i FX=XYX
29 fvsng XVYWXYX=Y
30 29 3adant3 XVYWZUXYX=Y
31 28 30 eqtrid XVYWZUFX=Y
32 31 sneqd XVYWZUFX=Y
33 32 neeq1d XVYWZUFXZYZ
34 sneqbg YWY=ZY=Z
35 34 3ad2ant2 XVYWZUY=ZY=Z
36 35 necon3abid XVYWZUYZ¬Y=Z
37 27 33 36 3bitrd XVYWZUFXZ¬Y=Z
38 37 ifbid XVYWZUifFXZX=if¬Y=ZX
39 ifnot if¬Y=ZX=ifY=ZX
40 38 39 eqtrdi XVYWZUifFXZX=ifY=ZX
41 13 20 40 3eqtrd XVYWZUFsuppZ=ifY=ZX