Metamath Proof Explorer


Theorem symgsubg

Description: The value of the group subtraction operation of the symmetric group. (Contributed by Thierry Arnoux, 15-Oct-2023)

Ref Expression
Hypotheses symgsubg.g G=SymGrpA
symgsubg.b B=BaseG
symgsubg.m -˙=-G
Assertion symgsubg XBYBX-˙Y=XY-1

Proof

Step Hyp Ref Expression
1 symgsubg.g G=SymGrpA
2 symgsubg.b B=BaseG
3 symgsubg.m -˙=-G
4 eqid +G=+G
5 eqid invgG=invgG
6 2 4 5 3 grpsubval XBYBX-˙Y=X+GinvgGY
7 1 2 5 symginv YBinvgGY=Y-1
8 7 adantl XBYBinvgGY=Y-1
9 8 oveq2d XBYBX+GinvgGY=X+GY-1
10 1 2 elbasfv XBAV
11 1 symggrp AVGGrp
12 10 11 syl XBGGrp
13 2 5 grpinvcl GGrpYBinvgGYB
14 12 13 sylan XBYBinvgGYB
15 8 14 eqeltrrd XBYBY-1B
16 1 2 4 symgov XBY-1BX+GY-1=XY-1
17 15 16 syldan XBYBX+GY-1=XY-1
18 6 9 17 3eqtrd XBYBX-˙Y=XY-1