Description: Express the tangent function directly in terms of exp . (Contributed by Mario Carneiro, 25-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | tanval3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn | |
|
2 | simpl | |
|
3 | mulcl | |
|
4 | 1 2 3 | sylancr | |
5 | efcl | |
|
6 | 4 5 | syl | |
7 | negicn | |
|
8 | mulcl | |
|
9 | 7 2 8 | sylancr | |
10 | efcl | |
|
11 | 9 10 | syl | |
12 | 6 11 | subcld | |
13 | 6 11 | addcld | |
14 | mulcl | |
|
15 | 1 13 14 | sylancr | |
16 | 2z | |
|
17 | efexp | |
|
18 | 4 16 17 | sylancl | |
19 | 6 | sqvald | |
20 | 18 19 | eqtrd | |
21 | mulneg1 | |
|
22 | 1 2 21 | sylancr | |
23 | 22 | fveq2d | |
24 | 23 | oveq2d | |
25 | efcan | |
|
26 | 4 25 | syl | |
27 | 24 26 | eqtr2d | |
28 | 20 27 | oveq12d | |
29 | 6 6 11 | adddid | |
30 | 28 29 | eqtr4d | |
31 | 30 | oveq2d | |
32 | 1 | a1i | |
33 | 32 6 13 | mul12d | |
34 | 31 33 | eqtrd | |
35 | 2cn | |
|
36 | mulcl | |
|
37 | 35 4 36 | sylancr | |
38 | efcl | |
|
39 | 37 38 | syl | |
40 | ax-1cn | |
|
41 | addcl | |
|
42 | 39 40 41 | sylancl | |
43 | ine0 | |
|
44 | 43 | a1i | |
45 | simpr | |
|
46 | 32 42 44 45 | mulne0d | |
47 | 34 46 | eqnetrrd | |
48 | 6 15 47 | mulne0bbd | |
49 | efne0 | |
|
50 | 4 49 | syl | |
51 | 12 15 6 48 50 | divcan5d | |
52 | 20 27 | oveq12d | |
53 | 6 6 11 | subdid | |
54 | 52 53 | eqtr4d | |
55 | 54 34 | oveq12d | |
56 | cosval | |
|
57 | 56 | adantr | |
58 | 2cnd | |
|
59 | 32 13 48 | mulne0bbd | |
60 | 2ne0 | |
|
61 | 60 | a1i | |
62 | 13 58 59 61 | divne0d | |
63 | 57 62 | eqnetrd | |
64 | tanval2 | |
|
65 | 63 64 | syldan | |
66 | 51 55 65 | 3eqtr4rd | |