Metamath Proof Explorer


Theorem tanval3

Description: Express the tangent function directly in terms of exp . (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion tanval3 Ae2iA+10tanA=e2iA1ie2iA+1

Proof

Step Hyp Ref Expression
1 ax-icn i
2 simpl Ae2iA+10A
3 mulcl iAiA
4 1 2 3 sylancr Ae2iA+10iA
5 efcl iAeiA
6 4 5 syl Ae2iA+10eiA
7 negicn i
8 mulcl iAiA
9 7 2 8 sylancr Ae2iA+10iA
10 efcl iAeiA
11 9 10 syl Ae2iA+10eiA
12 6 11 subcld Ae2iA+10eiAeiA
13 6 11 addcld Ae2iA+10eiA+eiA
14 mulcl ieiA+eiAieiA+eiA
15 1 13 14 sylancr Ae2iA+10ieiA+eiA
16 2z 2
17 efexp iA2e2iA=eiA2
18 4 16 17 sylancl Ae2iA+10e2iA=eiA2
19 6 sqvald Ae2iA+10eiA2=eiAeiA
20 18 19 eqtrd Ae2iA+10e2iA=eiAeiA
21 mulneg1 iAiA=iA
22 1 2 21 sylancr Ae2iA+10iA=iA
23 22 fveq2d Ae2iA+10eiA=eiA
24 23 oveq2d Ae2iA+10eiAeiA=eiAeiA
25 efcan iAeiAeiA=1
26 4 25 syl Ae2iA+10eiAeiA=1
27 24 26 eqtr2d Ae2iA+101=eiAeiA
28 20 27 oveq12d Ae2iA+10e2iA+1=eiAeiA+eiAeiA
29 6 6 11 adddid Ae2iA+10eiAeiA+eiA=eiAeiA+eiAeiA
30 28 29 eqtr4d Ae2iA+10e2iA+1=eiAeiA+eiA
31 30 oveq2d Ae2iA+10ie2iA+1=ieiAeiA+eiA
32 1 a1i Ae2iA+10i
33 32 6 13 mul12d Ae2iA+10ieiAeiA+eiA=eiAieiA+eiA
34 31 33 eqtrd Ae2iA+10ie2iA+1=eiAieiA+eiA
35 2cn 2
36 mulcl 2iA2iA
37 35 4 36 sylancr Ae2iA+102iA
38 efcl 2iAe2iA
39 37 38 syl Ae2iA+10e2iA
40 ax-1cn 1
41 addcl e2iA1e2iA+1
42 39 40 41 sylancl Ae2iA+10e2iA+1
43 ine0 i0
44 43 a1i Ae2iA+10i0
45 simpr Ae2iA+10e2iA+10
46 32 42 44 45 mulne0d Ae2iA+10ie2iA+10
47 34 46 eqnetrrd Ae2iA+10eiAieiA+eiA0
48 6 15 47 mulne0bbd Ae2iA+10ieiA+eiA0
49 efne0 iAeiA0
50 4 49 syl Ae2iA+10eiA0
51 12 15 6 48 50 divcan5d Ae2iA+10eiAeiAeiAeiAieiA+eiA=eiAeiAieiA+eiA
52 20 27 oveq12d Ae2iA+10e2iA1=eiAeiAeiAeiA
53 6 6 11 subdid Ae2iA+10eiAeiAeiA=eiAeiAeiAeiA
54 52 53 eqtr4d Ae2iA+10e2iA1=eiAeiAeiA
55 54 34 oveq12d Ae2iA+10e2iA1ie2iA+1=eiAeiAeiAeiAieiA+eiA
56 cosval AcosA=eiA+eiA2
57 56 adantr Ae2iA+10cosA=eiA+eiA2
58 2cnd Ae2iA+102
59 32 13 48 mulne0bbd Ae2iA+10eiA+eiA0
60 2ne0 20
61 60 a1i Ae2iA+1020
62 13 58 59 61 divne0d Ae2iA+10eiA+eiA20
63 57 62 eqnetrd Ae2iA+10cosA0
64 tanval2 AcosA0tanA=eiAeiAieiA+eiA
65 63 64 syldan Ae2iA+10tanA=eiAeiAieiA+eiA
66 51 55 65 3eqtr4rd Ae2iA+10tanA=e2iA1ie2iA+1