Metamath Proof Explorer


Theorem tendo0mul

Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 1-Aug-2013)

Ref Expression
Hypotheses tendoid0.b B=BaseK
tendoid0.h H=LHypK
tendoid0.t T=LTrnKW
tendoid0.e E=TEndoKW
tendoid0.o O=fTIB
Assertion tendo0mul KHLWHUEOU=O

Proof

Step Hyp Ref Expression
1 tendoid0.b B=BaseK
2 tendoid0.h H=LHypK
3 tendoid0.t T=LTrnKW
4 tendoid0.e E=TEndoKW
5 tendoid0.o O=fTIB
6 1 2 3 cdlemftr0 KHLWHgTgIB
7 6 adantr KHLWHUEgTgIB
8 simpll KHLWHUEgTgIBKHLWH
9 1 2 3 4 5 tendo0cl KHLWHOE
10 9 ad2antrr KHLWHUEgTgIBOE
11 simplr KHLWHUEgTgIBUE
12 2 4 tendococl KHLWHOEUEOUE
13 8 10 11 12 syl3anc KHLWHUEgTgIBOUE
14 simprl KHLWHUEgTgIBgT
15 2 3 4 tendocl KHLWHUEgTUgT
16 8 11 14 15 syl3anc KHLWHUEgTgIBUgT
17 5 1 tendo02 UgTOUg=IB
18 16 17 syl KHLWHUEgTgIBOUg=IB
19 2 3 4 tendocoval KHLWHOEUEgTOUg=OUg
20 8 10 11 14 19 syl121anc KHLWHUEgTgIBOUg=OUg
21 5 1 tendo02 gTOg=IB
22 21 ad2antrl KHLWHUEgTgIBOg=IB
23 18 20 22 3eqtr4d KHLWHUEgTgIBOUg=Og
24 simpr KHLWHUEgTgIBgTgIB
25 1 2 3 4 tendocan KHLWHOUEOEOUg=OggTgIBOU=O
26 8 13 10 23 24 25 syl131anc KHLWHUEgTgIBOU=O
27 7 26 rexlimddv KHLWHUEOU=O