Description: A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | toprntopon | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon2 | |
|
2 | fvex | |
|
3 | eleq2 | |
|
4 | eleq1 | |
|
5 | 3 4 | anbi12d | |
6 | simpl | |
|
7 | fntopon | |
|
8 | vuniex | |
|
9 | fnfvelrn | |
|
10 | 7 8 9 | mp2an | |
11 | 10 | jctr | |
12 | 6 11 | impbii | |
13 | 5 12 | bitrdi | |
14 | 2 13 | spcev | |
15 | 1 14 | sylbi | |
16 | funtopon | |
|
17 | elrnrexdm | |
|
18 | 16 17 | ax-mp | |
19 | rexex | |
|
20 | 18 19 | syl | |
21 | 19.42v | |
|
22 | eqimss | |
|
23 | 22 | sseld | |
24 | 23 | impcom | |
25 | 24 | eximi | |
26 | 21 25 | sylbir | |
27 | 20 26 | sylan2 | |
28 | topontop | |
|
29 | 28 | exlimiv | |
30 | 27 29 | syl | |
31 | 30 | exlimiv | |
32 | 15 31 | impbii | |
33 | eluni | |
|
34 | 32 33 | bitr4i | |
35 | 34 | eqriv | |