Metamath Proof Explorer


Theorem trclimalb2

Description: Lower bound for image under a transitive closure. (Contributed by RP, 1-Jul-2020)

Ref Expression
Assertion trclimalb2 RVRABBt+RAB

Proof

Step Hyp Ref Expression
1 elex RVRV
2 1 adantr RVRABBRV
3 oveq1 r=Rrrk=Rrk
4 3 iuneq2d r=Rkrrk=kRrk
5 dftrcl3 t+=rVkrrk
6 nnex V
7 ovex RrkV
8 6 7 iunex kRrkV
9 4 5 8 fvmpt RVt+R=kRrk
10 9 imaeq1d RVt+RA=kRrkA
11 imaiun1 kRrkA=kRrkA
12 10 11 eqtrdi RVt+RA=kRrkA
13 2 12 syl RVRABBt+RA=kRrkA
14 oveq2 x=1Rrx=Rr1
15 14 imaeq1d x=1RrxA=Rr1A
16 15 sseq1d x=1RrxABRr1AB
17 16 imbi2d x=1RVRABBRrxABRVRABBRr1AB
18 oveq2 x=yRrx=Rry
19 18 imaeq1d x=yRrxA=RryA
20 19 sseq1d x=yRrxABRryAB
21 20 imbi2d x=yRVRABBRrxABRVRABBRryAB
22 oveq2 x=y+1Rrx=Rry+1
23 22 imaeq1d x=y+1RrxA=Rry+1A
24 23 sseq1d x=y+1RrxABRry+1AB
25 24 imbi2d x=y+1RVRABBRrxABRVRABBRry+1AB
26 oveq2 x=kRrx=Rrk
27 26 imaeq1d x=kRrxA=RrkA
28 27 sseq1d x=kRrxABRrkAB
29 28 imbi2d x=kRVRABBRrxABRVRABBRrkAB
30 relexp1g RVRr1=R
31 30 imaeq1d RVRr1A=RA
32 31 adantr RVRABBRr1A=RA
33 ssun1 AAB
34 imass2 AABRARAB
35 33 34 mp1i RVRABBRARAB
36 simpr RVRABBRABB
37 35 36 sstrd RVRABBRAB
38 32 37 eqsstrd RVRABBRr1AB
39 simp2l yRVRABBRryABRV
40 simp1 yRVRABBRryABy
41 relexpsucnnl RVyRry+1=RRry
42 41 imaeq1d RVyRry+1A=RRryA
43 imaco RRryA=RRryA
44 42 43 eqtrdi RVyRry+1A=RRryA
45 39 40 44 syl2anc yRVRABBRryABRry+1A=RRryA
46 imass2 RryABRRryARB
47 46 3ad2ant3 yRVRABBRryABRRryARB
48 ssun2 BAB
49 imass2 BABRBRAB
50 48 49 mp1i yRVRABBRryABRBRAB
51 simp2r yRVRABBRryABRABB
52 50 51 sstrd yRVRABBRryABRBB
53 47 52 sstrd yRVRABBRryABRRryAB
54 45 53 eqsstrd yRVRABBRryABRry+1AB
55 54 3exp yRVRABBRryABRry+1AB
56 55 a2d yRVRABBRryABRVRABBRry+1AB
57 17 21 25 29 38 56 nnind kRVRABBRrkAB
58 57 com12 RVRABBkRrkAB
59 58 ralrimiv RVRABBkRrkAB
60 iunss kRrkABkRrkAB
61 59 60 sylibr RVRABBkRrkAB
62 13 61 eqsstrd RVRABBt+RAB