Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|
2 |
1
|
adantr |
|
3 |
|
oveq1 |
|
4 |
3
|
iuneq2d |
|
5 |
|
dftrcl3 |
|
6 |
|
nnex |
|
7 |
|
ovex |
|
8 |
6 7
|
iunex |
|
9 |
4 5 8
|
fvmpt |
|
10 |
9
|
imaeq1d |
|
11 |
|
imaiun1 |
|
12 |
10 11
|
eqtrdi |
|
13 |
2 12
|
syl |
|
14 |
|
oveq2 |
|
15 |
14
|
imaeq1d |
|
16 |
15
|
sseq1d |
|
17 |
16
|
imbi2d |
|
18 |
|
oveq2 |
|
19 |
18
|
imaeq1d |
|
20 |
19
|
sseq1d |
|
21 |
20
|
imbi2d |
|
22 |
|
oveq2 |
|
23 |
22
|
imaeq1d |
|
24 |
23
|
sseq1d |
|
25 |
24
|
imbi2d |
|
26 |
|
oveq2 |
|
27 |
26
|
imaeq1d |
|
28 |
27
|
sseq1d |
|
29 |
28
|
imbi2d |
|
30 |
|
relexp1g |
|
31 |
30
|
imaeq1d |
|
32 |
31
|
adantr |
|
33 |
|
ssun1 |
|
34 |
|
imass2 |
|
35 |
33 34
|
mp1i |
|
36 |
|
simpr |
|
37 |
35 36
|
sstrd |
|
38 |
32 37
|
eqsstrd |
|
39 |
|
simp2l |
|
40 |
|
simp1 |
|
41 |
|
relexpsucnnl |
|
42 |
41
|
imaeq1d |
|
43 |
|
imaco |
|
44 |
42 43
|
eqtrdi |
|
45 |
39 40 44
|
syl2anc |
|
46 |
|
imass2 |
|
47 |
46
|
3ad2ant3 |
|
48 |
|
ssun2 |
|
49 |
|
imass2 |
|
50 |
48 49
|
mp1i |
|
51 |
|
simp2r |
|
52 |
50 51
|
sstrd |
|
53 |
47 52
|
sstrd |
|
54 |
45 53
|
eqsstrd |
|
55 |
54
|
3exp |
|
56 |
55
|
a2d |
|
57 |
17 21 25 29 38 56
|
nnind |
|
58 |
57
|
com12 |
|
59 |
58
|
ralrimiv |
|
60 |
|
iunss |
|
61 |
59 60
|
sylibr |
|
62 |
13 61
|
eqsstrd |
|