Metamath Proof Explorer


Theorem trclimalb2

Description: Lower bound for image under a transitive closure. (Contributed by RP, 1-Jul-2020)

Ref Expression
Assertion trclimalb2 R V R A B B t+ R A B

Proof

Step Hyp Ref Expression
1 elex R V R V
2 1 adantr R V R A B B R V
3 oveq1 r = R r r k = R r k
4 3 iuneq2d r = R k r r k = k R r k
5 dftrcl3 t+ = r V k r r k
6 nnex V
7 ovex R r k V
8 6 7 iunex k R r k V
9 4 5 8 fvmpt R V t+ R = k R r k
10 9 imaeq1d R V t+ R A = k R r k A
11 imaiun1 k R r k A = k R r k A
12 10 11 eqtrdi R V t+ R A = k R r k A
13 2 12 syl R V R A B B t+ R A = k R r k A
14 oveq2 x = 1 R r x = R r 1
15 14 imaeq1d x = 1 R r x A = R r 1 A
16 15 sseq1d x = 1 R r x A B R r 1 A B
17 16 imbi2d x = 1 R V R A B B R r x A B R V R A B B R r 1 A B
18 oveq2 x = y R r x = R r y
19 18 imaeq1d x = y R r x A = R r y A
20 19 sseq1d x = y R r x A B R r y A B
21 20 imbi2d x = y R V R A B B R r x A B R V R A B B R r y A B
22 oveq2 x = y + 1 R r x = R r y + 1
23 22 imaeq1d x = y + 1 R r x A = R r y + 1 A
24 23 sseq1d x = y + 1 R r x A B R r y + 1 A B
25 24 imbi2d x = y + 1 R V R A B B R r x A B R V R A B B R r y + 1 A B
26 oveq2 x = k R r x = R r k
27 26 imaeq1d x = k R r x A = R r k A
28 27 sseq1d x = k R r x A B R r k A B
29 28 imbi2d x = k R V R A B B R r x A B R V R A B B R r k A B
30 relexp1g R V R r 1 = R
31 30 imaeq1d R V R r 1 A = R A
32 31 adantr R V R A B B R r 1 A = R A
33 ssun1 A A B
34 imass2 A A B R A R A B
35 33 34 mp1i R V R A B B R A R A B
36 simpr R V R A B B R A B B
37 35 36 sstrd R V R A B B R A B
38 32 37 eqsstrd R V R A B B R r 1 A B
39 simp2l y R V R A B B R r y A B R V
40 simp1 y R V R A B B R r y A B y
41 relexpsucnnl R V y R r y + 1 = R R r y
42 41 imaeq1d R V y R r y + 1 A = R R r y A
43 imaco R R r y A = R R r y A
44 42 43 eqtrdi R V y R r y + 1 A = R R r y A
45 39 40 44 syl2anc y R V R A B B R r y A B R r y + 1 A = R R r y A
46 imass2 R r y A B R R r y A R B
47 46 3ad2ant3 y R V R A B B R r y A B R R r y A R B
48 ssun2 B A B
49 imass2 B A B R B R A B
50 48 49 mp1i y R V R A B B R r y A B R B R A B
51 simp2r y R V R A B B R r y A B R A B B
52 50 51 sstrd y R V R A B B R r y A B R B B
53 47 52 sstrd y R V R A B B R r y A B R R r y A B
54 45 53 eqsstrd y R V R A B B R r y A B R r y + 1 A B
55 54 3exp y R V R A B B R r y A B R r y + 1 A B
56 55 a2d y R V R A B B R r y A B R V R A B B R r y + 1 A B
57 17 21 25 29 38 56 nnind k R V R A B B R r k A B
58 57 com12 R V R A B B k R r k A B
59 58 ralrimiv R V R A B B k R r k A B
60 iunss k R r k A B k R r k A B
61 59 60 sylibr R V R A B B k R r k A B
62 13 61 eqsstrd R V R A B B t+ R A B