Metamath Proof Explorer


Theorem trljat2

Description: The value of a translation of an atom P not under the fiducial co-atom W , joined with trace. Equation above Lemma C in Crawley p. 112. (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses trljat.l ˙=K
trljat.j ˙=joinK
trljat.a A=AtomsK
trljat.h H=LHypK
trljat.t T=LTrnKW
trljat.r R=trLKW
Assertion trljat2 KHLWHFTPA¬P˙WFP˙RF=P˙FP

Proof

Step Hyp Ref Expression
1 trljat.l ˙=K
2 trljat.j ˙=joinK
3 trljat.a A=AtomsK
4 trljat.h H=LHypK
5 trljat.t T=LTrnKW
6 trljat.r R=trLKW
7 simp1l KHLWHFTPA¬P˙WKHL
8 1 3 4 5 ltrnat KHLWHFTPAFPA
9 8 3adant3r KHLWHFTPA¬P˙WFPA
10 7 hllatd KHLWHFTPA¬P˙WKLat
11 simp3l KHLWHFTPA¬P˙WPA
12 eqid BaseK=BaseK
13 12 3 atbase PAPBaseK
14 11 13 syl KHLWHFTPA¬P˙WPBaseK
15 simp1 KHLWHFTPA¬P˙WKHLWH
16 simp2 KHLWHFTPA¬P˙WFT
17 12 4 5 ltrncl KHLWHFTPBaseKFPBaseK
18 15 16 14 17 syl3anc KHLWHFTPA¬P˙WFPBaseK
19 12 2 latjcl KLatPBaseKFPBaseKP˙FPBaseK
20 10 14 18 19 syl3anc KHLWHFTPA¬P˙WP˙FPBaseK
21 simp1r KHLWHFTPA¬P˙WWH
22 12 4 lhpbase WHWBaseK
23 21 22 syl KHLWHFTPA¬P˙WWBaseK
24 12 1 2 latlej2 KLatPBaseKFPBaseKFP˙P˙FP
25 10 14 18 24 syl3anc KHLWHFTPA¬P˙WFP˙P˙FP
26 eqid meetK=meetK
27 12 1 2 26 3 atmod2i1 KHLFPAP˙FPBaseKWBaseKFP˙P˙FPP˙FPmeetKW˙FP=P˙FPmeetKW˙FP
28 7 9 20 23 25 27 syl131anc KHLWHFTPA¬P˙WP˙FPmeetKW˙FP=P˙FPmeetKW˙FP
29 1 3 4 5 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
30 eqid 1.K=1.K
31 1 2 30 3 4 lhpjat1 KHLWHFPA¬FP˙WW˙FP=1.K
32 7 21 29 31 syl21anc KHLWHFTPA¬P˙WW˙FP=1.K
33 32 oveq2d KHLWHFTPA¬P˙WP˙FPmeetKW˙FP=P˙FPmeetK1.K
34 hlol KHLKOL
35 7 34 syl KHLWHFTPA¬P˙WKOL
36 12 26 30 olm11 KOLP˙FPBaseKP˙FPmeetK1.K=P˙FP
37 35 20 36 syl2anc KHLWHFTPA¬P˙WP˙FPmeetK1.K=P˙FP
38 28 33 37 3eqtrrd KHLWHFTPA¬P˙WP˙FP=P˙FPmeetKW˙FP
39 1 2 26 3 4 5 6 trlval2 KHLWHFTPA¬P˙WRF=P˙FPmeetKW
40 39 oveq1d KHLWHFTPA¬P˙WRF˙FP=P˙FPmeetKW˙FP
41 12 4 5 6 trlcl KHLWHFTRFBaseK
42 15 16 41 syl2anc KHLWHFTPA¬P˙WRFBaseK
43 12 2 latjcom KLatRFBaseKFPBaseKRF˙FP=FP˙RF
44 10 42 18 43 syl3anc KHLWHFTPA¬P˙WRF˙FP=FP˙RF
45 38 40 44 3eqtr2rd KHLWHFTPA¬P˙WFP˙RF=P˙FP