Metamath Proof Explorer


Theorem tuslemOLD

Description: Obsolete proof of tuslem as of 28-Oct-2024. Lemma for tusbas , tusunif , and tustopn . (Contributed by Thierry Arnoux, 5-Dec-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis tuslem.k K = toUnifSp U
Assertion tuslemOLD U UnifOn X X = Base K U = UnifSet K unifTop U = TopOpen K

Proof

Step Hyp Ref Expression
1 tuslem.k K = toUnifSp U
2 baseid Base = Slot Base ndx
3 1re 1
4 1lt9 1 < 9
5 3 4 ltneii 1 9
6 basendx Base ndx = 1
7 tsetndx TopSet ndx = 9
8 6 7 neeq12i Base ndx TopSet ndx 1 9
9 5 8 mpbir Base ndx TopSet ndx
10 2 9 setsnid Base Base ndx dom U UnifSet ndx U = Base Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
11 ustbas2 U UnifOn X X = dom U
12 uniexg U UnifOn X U V
13 dmexg U V dom U V
14 eqid Base ndx dom U UnifSet ndx U = Base ndx dom U UnifSet ndx U
15 df-unif UnifSet = Slot 13
16 1nn 1
17 3nn0 3 0
18 1nn0 1 0
19 1lt10 1 < 10
20 16 17 18 19 declti 1 < 13
21 3nn 3
22 18 21 decnncl 13
23 14 15 20 22 2strbas dom U V dom U = Base Base ndx dom U UnifSet ndx U
24 12 13 23 3syl U UnifOn X dom U = Base Base ndx dom U UnifSet ndx U
25 11 24 eqtrd U UnifOn X X = Base Base ndx dom U UnifSet ndx U
26 tusval U UnifOn X toUnifSp U = Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
27 1 26 syl5eq U UnifOn X K = Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
28 27 fveq2d U UnifOn X Base K = Base Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
29 10 25 28 3eqtr4a U UnifOn X X = Base K
30 unifid UnifSet = Slot UnifSet ndx
31 9re 9
32 9nn0 9 0
33 9lt10 9 < 10
34 16 17 32 33 declti 9 < 13
35 31 34 gtneii 13 9
36 unifndx UnifSet ndx = 13
37 36 7 neeq12i UnifSet ndx TopSet ndx 13 9
38 35 37 mpbir UnifSet ndx TopSet ndx
39 30 38 setsnid UnifSet Base ndx dom U UnifSet ndx U = UnifSet Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
40 14 15 20 22 2strop U UnifOn X U = UnifSet Base ndx dom U UnifSet ndx U
41 27 fveq2d U UnifOn X UnifSet K = UnifSet Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
42 39 40 41 3eqtr4a U UnifOn X U = UnifSet K
43 prex Base ndx dom U UnifSet ndx U V
44 fvex unifTop U V
45 tsetid TopSet = Slot TopSet ndx
46 45 setsid Base ndx dom U UnifSet ndx U V unifTop U V unifTop U = TopSet Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
47 43 44 46 mp2an unifTop U = TopSet Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
48 27 fveq2d U UnifOn X TopSet K = TopSet Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
49 47 48 eqtr4id U UnifOn X unifTop U = TopSet K
50 utopbas U UnifOn X X = unifTop U
51 49 unieqd U UnifOn X unifTop U = TopSet K
52 50 29 51 3eqtr3rd U UnifOn X TopSet K = Base K
53 52 oveq2d U UnifOn X TopSet K 𝑡 TopSet K = TopSet K 𝑡 Base K
54 fvex TopSet K V
55 eqid TopSet K = TopSet K
56 55 restid TopSet K V TopSet K 𝑡 TopSet K = TopSet K
57 54 56 ax-mp TopSet K 𝑡 TopSet K = TopSet K
58 eqid Base K = Base K
59 eqid TopSet K = TopSet K
60 58 59 topnval TopSet K 𝑡 Base K = TopOpen K
61 53 57 60 3eqtr3g U UnifOn X TopSet K = TopOpen K
62 49 61 eqtrd U UnifOn X unifTop U = TopOpen K
63 29 42 62 3jca U UnifOn X X = Base K U = UnifSet K unifTop U = TopOpen K