Metamath Proof Explorer


Theorem uhgrwkspth

Description: Any walk of length 1 between two different vertices is a simple path. (Contributed by AV, 25-Jan-2021) (Proof shortened by AV, 31-Oct-2021) (Revised by AV, 7-Jul-2022)

Ref Expression
Assertion uhgrwkspth GWF=1ABFAWalksOnGBPFASPathsOnGBP

Proof

Step Hyp Ref Expression
1 simpl31 AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABFWalksGP
2 uhgrwkspthlem1 FWalksGPF=1FunF-1
3 2 expcom F=1FWalksGPFunF-1
4 3 3ad2ant2 GWF=1ABFWalksGPFunF-1
5 4 com12 FWalksGPGWF=1ABFunF-1
6 5 3ad2ant1 FWalksGPP0=APF=BGWF=1ABFunF-1
7 6 3ad2ant3 AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABFunF-1
8 7 imp AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABFunF-1
9 istrl FTrailsGPFWalksGPFunF-1
10 1 8 9 sylanbrc AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABFTrailsGP
11 3simpc GWF=1ABF=1AB
12 11 adantl AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABF=1AB
13 3simpc FWalksGPP0=APF=BP0=APF=B
14 13 3ad2ant3 AVtxGBVtxGFVPVFWalksGPP0=APF=BP0=APF=B
15 14 adantr AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABP0=APF=B
16 uhgrwkspthlem2 FWalksGPF=1ABP0=APF=BFunP-1
17 1 12 15 16 syl3anc AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABFunP-1
18 isspth FSPathsGPFTrailsGPFunP-1
19 10 17 18 sylanbrc AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABFSPathsGP
20 3anass FSPathsGPP0=APF=BFSPathsGPP0=APF=B
21 19 15 20 sylanbrc AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABFSPathsGPP0=APF=B
22 3simpa AVtxGBVtxGFVPVFWalksGPP0=APF=BAVtxGBVtxGFVPV
23 22 adantr AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABAVtxGBVtxGFVPV
24 eqid VtxG=VtxG
25 24 isspthonpth AVtxGBVtxGFVPVFASPathsOnGBPFSPathsGPP0=APF=B
26 23 25 syl AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABFASPathsOnGBPFSPathsGPP0=APF=B
27 21 26 mpbird AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABFASPathsOnGBP
28 27 ex AVtxGBVtxGFVPVFWalksGPP0=APF=BGWF=1ABFASPathsOnGBP
29 24 wlkonprop FAWalksOnGBPGVAVtxGBVtxGFVPVFWalksGPP0=APF=B
30 3simpc GVAVtxGBVtxGAVtxGBVtxG
31 30 3anim1i GVAVtxGBVtxGFVPVFWalksGPP0=APF=BAVtxGBVtxGFVPVFWalksGPP0=APF=B
32 29 31 syl FAWalksOnGBPAVtxGBVtxGFVPVFWalksGPP0=APF=B
33 28 32 syl11 GWF=1ABFAWalksOnGBPFASPathsOnGBP
34 spthonpthon FASPathsOnGBPFAPathsOnGBP
35 pthontrlon FAPathsOnGBPFATrailsOnGBP
36 trlsonwlkon FATrailsOnGBPFAWalksOnGBP
37 34 35 36 3syl FASPathsOnGBPFAWalksOnGBP
38 33 37 impbid1 GWF=1ABFAWalksOnGBPFASPathsOnGBP