Description: Any walk of length 1 between two different vertices is a simple path. (Contributed by AV, 25-Jan-2021) (Proof shortened by AV, 31-Oct-2021) (Revised by AV, 7-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | uhgrwkspth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl31 | |
|
2 | uhgrwkspthlem1 | |
|
3 | 2 | expcom | |
4 | 3 | 3ad2ant2 | |
5 | 4 | com12 | |
6 | 5 | 3ad2ant1 | |
7 | 6 | 3ad2ant3 | |
8 | 7 | imp | |
9 | istrl | |
|
10 | 1 8 9 | sylanbrc | |
11 | 3simpc | |
|
12 | 11 | adantl | |
13 | 3simpc | |
|
14 | 13 | 3ad2ant3 | |
15 | 14 | adantr | |
16 | uhgrwkspthlem2 | |
|
17 | 1 12 15 16 | syl3anc | |
18 | isspth | |
|
19 | 10 17 18 | sylanbrc | |
20 | 3anass | |
|
21 | 19 15 20 | sylanbrc | |
22 | 3simpa | |
|
23 | 22 | adantr | |
24 | eqid | |
|
25 | 24 | isspthonpth | |
26 | 23 25 | syl | |
27 | 21 26 | mpbird | |
28 | 27 | ex | |
29 | 24 | wlkonprop | |
30 | 3simpc | |
|
31 | 30 | 3anim1i | |
32 | 29 31 | syl | |
33 | 28 32 | syl11 | |
34 | spthonpthon | |
|
35 | pthontrlon | |
|
36 | trlsonwlkon | |
|
37 | 34 35 36 | 3syl | |
38 | 33 37 | impbid1 | |