Description: Lemma 2 for uhgrwkspth . (Contributed by AV, 25-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | uhgrwkspthlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | wlkp | |
3 | oveq2 | |
|
4 | 1e0p1 | |
|
5 | 4 | oveq2i | |
6 | 0z | |
|
7 | fzpr | |
|
8 | 6 7 | ax-mp | |
9 | 0p1e1 | |
|
10 | 9 | preq2i | |
11 | 5 8 10 | 3eqtri | |
12 | 3 11 | eqtrdi | |
13 | 12 | feq2d | |
14 | 13 | adantr | |
15 | simpl | |
|
16 | simpr | |
|
17 | 15 16 | neeq12d | |
18 | 17 | bicomd | |
19 | fveq2 | |
|
20 | 19 | neeq2d | |
21 | 18 20 | sylan9bbr | |
22 | 14 21 | anbi12d | |
23 | 1z | |
|
24 | fpr2g | |
|
25 | 6 23 24 | mp2an | |
26 | funcnvs2 | |
|
27 | 26 | 3expa | |
28 | 27 | adantl | |
29 | simpl | |
|
30 | s2prop | |
|
31 | 30 | eqcomd | |
32 | 31 | adantr | |
33 | 32 | adantl | |
34 | 29 33 | eqtrd | |
35 | 34 | cnveqd | |
36 | 35 | funeqd | |
37 | 28 36 | mpbird | |
38 | 37 | exp32 | |
39 | 38 | impcom | |
40 | 39 | 3impa | |
41 | 25 40 | sylbi | |
42 | 41 | imp | |
43 | 22 42 | syl6bi | |
44 | 43 | expd | |
45 | 44 | com12 | |
46 | 45 | expd | |
47 | 46 | com34 | |
48 | 47 | impd | |
49 | 2 48 | syl | |
50 | 49 | 3imp | |