Metamath Proof Explorer


Theorem uhgrwkspthlem2

Description: Lemma 2 for uhgrwkspth . (Contributed by AV, 25-Jan-2021)

Ref Expression
Assertion uhgrwkspthlem2 FWalksGPF=1ABP0=APF=BFunP-1

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 wlkp FWalksGPP:0FVtxG
3 oveq2 F=10F=01
4 1e0p1 1=0+1
5 4 oveq2i 01=00+1
6 0z 0
7 fzpr 000+1=00+1
8 6 7 ax-mp 00+1=00+1
9 0p1e1 0+1=1
10 9 preq2i 00+1=01
11 5 8 10 3eqtri 01=01
12 3 11 eqtrdi F=10F=01
13 12 feq2d F=1P:0FVtxGP:01VtxG
14 13 adantr F=1P0=APF=BP:0FVtxGP:01VtxG
15 simpl P0=APF=BP0=A
16 simpr P0=APF=BPF=B
17 15 16 neeq12d P0=APF=BP0PFAB
18 17 bicomd P0=APF=BABP0PF
19 fveq2 F=1PF=P1
20 19 neeq2d F=1P0PFP0P1
21 18 20 sylan9bbr F=1P0=APF=BABP0P1
22 14 21 anbi12d F=1P0=APF=BP:0FVtxGABP:01VtxGP0P1
23 1z 1
24 fpr2g 01P:01VtxGP0VtxGP1VtxGP=0P01P1
25 6 23 24 mp2an P:01VtxGP0VtxGP1VtxGP=0P01P1
26 funcnvs2 P0VtxGP1VtxGP0P1Fun⟨“P0P1”⟩-1
27 26 3expa P0VtxGP1VtxGP0P1Fun⟨“P0P1”⟩-1
28 27 adantl P=0P01P1P0VtxGP1VtxGP0P1Fun⟨“P0P1”⟩-1
29 simpl P=0P01P1P0VtxGP1VtxGP0P1P=0P01P1
30 s2prop P0VtxGP1VtxG⟨“P0P1”⟩=0P01P1
31 30 eqcomd P0VtxGP1VtxG0P01P1=⟨“P0P1”⟩
32 31 adantr P0VtxGP1VtxGP0P10P01P1=⟨“P0P1”⟩
33 32 adantl P=0P01P1P0VtxGP1VtxGP0P10P01P1=⟨“P0P1”⟩
34 29 33 eqtrd P=0P01P1P0VtxGP1VtxGP0P1P=⟨“P0P1”⟩
35 34 cnveqd P=0P01P1P0VtxGP1VtxGP0P1P-1=⟨“P0P1”⟩-1
36 35 funeqd P=0P01P1P0VtxGP1VtxGP0P1FunP-1Fun⟨“P0P1”⟩-1
37 28 36 mpbird P=0P01P1P0VtxGP1VtxGP0P1FunP-1
38 37 exp32 P=0P01P1P0VtxGP1VtxGP0P1FunP-1
39 38 impcom P0VtxGP1VtxGP=0P01P1P0P1FunP-1
40 39 3impa P0VtxGP1VtxGP=0P01P1P0P1FunP-1
41 25 40 sylbi P:01VtxGP0P1FunP-1
42 41 imp P:01VtxGP0P1FunP-1
43 22 42 syl6bi F=1P0=APF=BP:0FVtxGABFunP-1
44 43 expd F=1P0=APF=BP:0FVtxGABFunP-1
45 44 com12 P:0FVtxGF=1P0=APF=BABFunP-1
46 45 expd P:0FVtxGF=1P0=APF=BABFunP-1
47 46 com34 P:0FVtxGF=1ABP0=APF=BFunP-1
48 47 impd P:0FVtxGF=1ABP0=APF=BFunP-1
49 2 48 syl FWalksGPF=1ABP0=APF=BFunP-1
50 49 3imp FWalksGPF=1ABP0=APF=BFunP-1