Metamath Proof Explorer


Theorem umgr2adedgwlkonALT

Description: Alternate proof for umgr2adedgwlkon , using umgr2adedgwlk , but with a much longer proof! In a multigraph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 30-Jan-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses umgr2adedgwlk.e E = Edg G
umgr2adedgwlk.i I = iEdg G
umgr2adedgwlk.f F = ⟨“ JK ”⟩
umgr2adedgwlk.p P = ⟨“ ABC ”⟩
umgr2adedgwlk.g φ G UMGraph
umgr2adedgwlk.a φ A B E B C E
umgr2adedgwlk.j φ I J = A B
umgr2adedgwlk.k φ I K = B C
Assertion umgr2adedgwlkonALT φ F A WalksOn G C P

Proof

Step Hyp Ref Expression
1 umgr2adedgwlk.e E = Edg G
2 umgr2adedgwlk.i I = iEdg G
3 umgr2adedgwlk.f F = ⟨“ JK ”⟩
4 umgr2adedgwlk.p P = ⟨“ ABC ”⟩
5 umgr2adedgwlk.g φ G UMGraph
6 umgr2adedgwlk.a φ A B E B C E
7 umgr2adedgwlk.j φ I J = A B
8 umgr2adedgwlk.k φ I K = B C
9 1 2 3 4 5 6 7 8 umgr2adedgwlk φ F Walks G P F = 2 A = P 0 B = P 1 C = P 2
10 simp1 F Walks G P F = 2 A = P 0 B = P 1 C = P 2 F Walks G P
11 id P 0 = A P 0 = A
12 11 eqcoms A = P 0 P 0 = A
13 12 3ad2ant1 A = P 0 B = P 1 C = P 2 P 0 = A
14 13 3ad2ant3 F Walks G P F = 2 A = P 0 B = P 1 C = P 2 P 0 = A
15 fveq2 2 = F P 2 = P F
16 15 eqcoms F = 2 P 2 = P F
17 16 eqeq1d F = 2 P 2 = C P F = C
18 17 biimpcd P 2 = C F = 2 P F = C
19 18 eqcoms C = P 2 F = 2 P F = C
20 19 3ad2ant3 A = P 0 B = P 1 C = P 2 F = 2 P F = C
21 20 com12 F = 2 A = P 0 B = P 1 C = P 2 P F = C
22 21 a1i F Walks G P F = 2 A = P 0 B = P 1 C = P 2 P F = C
23 22 3imp F Walks G P F = 2 A = P 0 B = P 1 C = P 2 P F = C
24 10 14 23 3jca F Walks G P F = 2 A = P 0 B = P 1 C = P 2 F Walks G P P 0 = A P F = C
25 9 24 syl φ F Walks G P P 0 = A P F = C
26 3anass G UMGraph A B E B C E G UMGraph A B E B C E
27 5 6 26 sylanbrc φ G UMGraph A B E B C E
28 1 umgr2adedgwlklem G UMGraph A B E B C E A B B C A Vtx G B Vtx G C Vtx G
29 3simpb A Vtx G B Vtx G C Vtx G A Vtx G C Vtx G
30 29 adantl A B B C A Vtx G B Vtx G C Vtx G A Vtx G C Vtx G
31 27 28 30 3syl φ A Vtx G C Vtx G
32 3anass G UMGraph A Vtx G C Vtx G G UMGraph A Vtx G C Vtx G
33 5 31 32 sylanbrc φ G UMGraph A Vtx G C Vtx G
34 s2cli ⟨“ JK ”⟩ Word V
35 3 34 eqeltri F Word V
36 s3cli ⟨“ ABC ”⟩ Word V
37 4 36 eqeltri P Word V
38 35 37 pm3.2i F Word V P Word V
39 id A Vtx G C Vtx G A Vtx G C Vtx G
40 39 3adant1 G UMGraph A Vtx G C Vtx G A Vtx G C Vtx G
41 40 anim1i G UMGraph A Vtx G C Vtx G F Word V P Word V A Vtx G C Vtx G F Word V P Word V
42 eqid Vtx G = Vtx G
43 42 iswlkon A Vtx G C Vtx G F Word V P Word V F A WalksOn G C P F Walks G P P 0 = A P F = C
44 41 43 syl G UMGraph A Vtx G C Vtx G F Word V P Word V F A WalksOn G C P F Walks G P P 0 = A P F = C
45 33 38 44 sylancl φ F A WalksOn G C P F Walks G P P 0 = A P F = C
46 25 45 mpbird φ F A WalksOn G C P